

Bumblebee

Processor Core

Instruction

Architecture

Manual

Page 5

revise history

versio

n

number

Revision

date

Revised

chapter

Revised

content

1.0

2019/6/21

N/A

Initial version

Page 5

table of Contents

revise history ... 2

List of forms .. 9

Picture list ... 10

1. Bumblebee kernel instruction set and csr introduction ... 10

1.1. Introduction to the risc-v instruction set ... 11

1.2. Bumblebee kernel support instruction set ... 11

1.3. Csr register ... 11

2. Bumblebee kernel privilege architecture introduction .. 12

2.1. General introduction ... 12

2.2. Privileged mode .. 12

2.2.1. Machine Mode (Machine Mode) .. 12

2.2.2. User Mode .. 12

2.2.3. Machine Sub-Mode ... 13

2.2.4. Mode view .. 13

2.2.5. Machine Mode to User Mode Switch .. 14

2.2.6. User Mode to Machine Mode Switch .. 15

2.2.7. Interrupt, exception, nmi nesting .. 15

2.3. Physical memory protection (pmp) ... 16

3. Bumblebee kernel exception mechanism introduction ... 16

3.1. Abnormal overview .. 16

3.2. Abnormal shielding ... 17

3.3. Abnormal priority .. 17

3.4. Enter exception handling mode .. 17

3.4.1. E x e c u t e f r o m t h e P C a d d r e s s d e f i n e d b y m t v e c 18

3.4.2. Update CSR register mcause ... 18

3.4.3. Update CSR register mepc ... 19

3.4.4. Update CSR register mtval .. 20

3.4.5. Update the CSR register mstatus .. 20

3.4.6. Update Privilege Mode .. 20

3.4.7. Update Machine Sub-Mode .. 21

3.5. Exit exception handling mode .. 21

Page 5

3.5.1. E x e c u t e f r o m t h e P C a d d r e s s d e f i n e d b y m e p c 22

3.5.2. Update the CSR register mstatus .. 22

3.5.3. Update Privilege Mode .. 23

3.5.4. Update Machine Sub-Mode .. 23

3.6. Exception service program .. 24

3.7. Abnormal nesting ... 24

4. Bumblebee kernel nmi mechanism introduction ... 25

4.1. Nmi overview ... 25

4.2. Nmi shielding .. 25

4.3. Enter nmi processing mode .. 25

4.3.1. E x e c u t e f r o m t h e P C a d d r e s s d e f i n e d b y m n v e c 26

4.3.2. Update CSR register mepc ... 26

4.3.3. Update CSR register mcause ... 27

4.3.4. Update the CSR register mstatus .. 27

4.3.5. Update Privilege Mode .. 27

4.3.6. Update Machine Sub-Mode .. 28

4.4. Exit nmi processing mode ... 28

4.4.1. E x e c u t e f r o m t h e P C a d d r e s s d e f i n e d b y m e p c 29

4.4.2. Update the CSR register mstatus .. 29

4.4.3. Update Privilege Mode .. 30

4.4.4. Update Machine Sub-Mode .. 30

4.5. Nmi service program .. 30

4.6. Nmi/abnormal nesting ... 31

4.6.1. Enter nmi/exception nesting .. 31

4.6.2. Exit nmi/exception nesting ... 33

5. Bumblebee kernel interrupt mechanism introduction ... 35

5.1. Interrupt overview ... 35

5.2. Interrupt controller eclic ... 35

5.3. Interrupt type ... 36

5.3.1. External Interrupt ... 36

5.3.2. Internal interrupt ... 36

5.4. Interrupt mask ... 37

5.4.1. Interrupt global mask .. 37

5.4.2. Interrupt source separately shielded ... 37

Page 10

5.5. Interrupt level, priority and arbitration .. 38

5.6. Enter interrupt processing mode ... 38

5.6.1. Execute from the new pc address .. 39

5.6.2. Update Privilege Mode .. 40

5.6.3. Update Machine Sub-Mode .. 40

5.6.4. Update CSR register mepc ... 40

5.6.5. Update the CSR registers mcause and mstatus .. 40

5.7. Exit interrupt processing mode .. 42

5.7.1. E x e c u t e f r o m t h e P C a d d r e s s d e f i n e d b y m e p c 43

5.7.2. Update the CSR registers mcause and mstatus .. 43

5.7.3. Update Privilege Mode .. 44

5.7.4. Update Machine Sub-Mode .. 44

5.8. Interrupt vector table .. 44

5.9. Context save and restore of incoming and outgoing interrupts 45

5.10. Interrupt response delay ... 46

5.11. Interrupt nesting .. 46

5.12. Interrupted biting ... 47

5.13. Interrupted vector processing mode and non-vector processing mode 48

5.13.1. Non-vector processing mode .. 48

5.13.2. Vector processing mode .. 54

6. Bumblebee kernel timer and eclic ... 58

6.1. Timer introduction ... 58

6.1.1. Introduction to timer ... 58

6.1.2. Timer register .. 58

6.1.3. Timing through the mtime register .. 59

6.1.4. Pause timer through mstop register ... 59

6.1.5. Generate timer interrupts via the mtime and mtimecmp registers 59

6.1.6. Generate software interrupts via msip register 60

6.2. Eclic introduction ... 60

6.2.1. Introduction to eclic ... 61

6.2.2. Eclic interrupt target .. 62

6.2.3. Eclic interrupt source .. 63

6.2.4. Eclic interrupt source number (id) ... 63

6.2.6. Eclic register 64 Eclic interrupt source enable bit (ie)
67

6.2.7. Eclic interrupt source wait flag (ip) ... 67

6.2.8. Level or Edge-Triggered of the ECLIC interrupt source 68

6.2.9. ECLIC interrupt source level and priority (Level and Priority) 68

Page 10

6.2.10. Vector or Non-Vector Mode of ECLIC Interrupt Sources 71

6.2.11. Eclic interrupt target threshold level ... 71

6.2.12. Arclic interrupt arbitration mechanism ... 71

6.2.13. Eclic interrupt response, nesting, tail biting mechanism 72

7. Bumblebee kernel csr register introduction .. 73

7.1. Bumblebee kernel csr register overview .. 73

7.2. Bumblebee kernel csr register list .. 73

7.3. Access to the cumbler register of the bumblebee kernel 75

7.4. Risc-v standard csr supported by bumblebee kernel .. 76

7.4.1. misa .. 76

7.4.2. mie ... 77

7.4.3. mvendorid ... 77

7.4.4. marchid ... 78

7.4.5. mimpid .. 78

7.4.6. mhartid ... 78

7.4.7. mstatus ... 78

7.4.8. MIE domain of mstatus .. 79

7.4.9. MPIE and MPP domains for mstatus ... 79

7.4.10. FS domain of mstatus ... 80

7.4.11. XS domain of mstatus ... 81

7.4.12. SD domain of mstatus ... 81

7.4.13. mtvec ... 82

7.4.14. mtvt .. 82

7.4.15. mscratch .. 83

7.4.16. mepc .. 83

7.4.17. mcause .. 84

7.4.18. mtval （mbadaddr） .. 85

7.4.19. mip ... 85

7.4.20. mnxti ... 85

7.4.21. mintstatus .. 86

Page 10

7.4.22. mscratchcsw ... 86

7.4.23. mscratchcswl .. 87

7.4.24. Mcycle and mcycleh .. 88

7.4.25. Minstret and minstreth .. 88

7.4.26. Cycle and cycleh .. 89

7.4.27. Instret and intreth ... 89

7.4.28. Time and timeh .. 89

7.4.29. mcounteren .. 89

7.5. Bumblebee kernel custom csr ... 90

7.5.1. mcountinhibit .. 90

7.5.2. mnvec .. 90

7.5.3. msubm .. 91

7.5.4. mmisc_ctl .. 91

7.5.5. msavestatus .. 92

7.5.6. Msaveepc1 and msaveepc2 ... 92

7.5.7. Msavecause1 and msavecause2 ... 93

7.5.8. pushmsubm .. 93

7.5.9. mtvt2 .. 93

7.5.10. jalmnxti .. 94

7.5.11. pushmcause .. 94

7.5.12. pushmepc .. 94

7.5.13. sleepvalue .. 95

7.5.14. txevt ... 95

7.5.15. wfe ... 96

8. Bumblebee kernel low power mechanism introduction ... 97

8.1. Go to sleep .. 97

8.2. Exit hibernation ... 98

8.2.1. Nmi wake up .. 98

8.2.2. Interrupt wakeup ... 98

8.2.3. Event wake up .. 99

8.2.4. Debug wake up .. 99

8.3. Wait for interrupt mechanism .. 99

8.4. Wait for event mechanism ... 99

Page 10

Page 10

List of forms
Table 3-1 The exception code in the mcause register .. 19

Table 6-1 Memory Map Addresses of the timer Register ... 58

Table 6-2 Bit field of register mstop .. 59

Table 6-3 Bit field of register msip ... 60

Table 6-4 eclic interrupt source number and assignment ... 63

Table 6-5 Intra-cell address offset of the eclic register .. 64

Table 6-6 Bit field of register cliccfg .. 65

Table 6-7 Bit field of register clicinfo ... 65

Table 6-8 Bit field of register mth .. 66

Table 6-9 Bit field of register clicintip[i] ... 66

Table 6-10 Bit field of register clicintip[i] ... 66

Table 6-11 Bit fields of the register clicintattr[i] ... 66

Table 7-1 List of csr registers supported by the bumblebee kernel 73

Table 7-2 Control bits of the mstatus register ... 79

Table 7-3 mtvec Register Control Bits .. 82

Table 7-4 mtvt alignment ... 83

Table 7-5 Control bits of the mepc register .. 84

Table 7-6 Control bits of the mcause register .. 84

Table 7-7 Control bits of the minstatus register ... 86

Table 7-8 mCounteren Register Control Bits ... 89

Table 7-9 Control bits of mcountinhibit register .. 90

Table 7-10 msubm Register Control Bits ... 91

Table 7-11 Control bits of the mmisc_ctl register .. 92

Table 7-12 msavestatus Register Control Bits ... 92

Table 7-13 mtvt2 register control bits ... 94

Table 7-14 sleepvalue register control bits .. 95

Table 7-15 txevt Register Control Bits ... 95

Table 7-16 Control bits of the wfe register .. 96

Page 20

Picture list
Figure 3-1 Overall process of abnormal response ... 18

Figure 3-3 Exiting the abnormal overall process ... 22

Figure 4-1 The overall process of nmi response .. 26

Figure 4-2 Changes to the csr register when entering/exiting nmi ... 28

Figure 4-3 Exiting the overall process of nmi ... 29

Figure 4-4 Schematic diagram of the two-level nmi/exception state stacking mechanism of the bumblebee kernel ... 31

Figure 5-1 Schematic diagram of the interrupt type .. 36

Figure 5-2 Schematic diagram of interrupt arbitration ... 38

Figure 5-3 Overall response to the interrupt .. 39

Figure 5-4 Changes to the csr register when entering/exiting an interrupt 42

Figure 5-5 Overall process of exiting the interrupt ... 43

Figure 5-6 Schematic diagram of the interrupt vector table .. 45

Figure 5-7 Schematic diagram of interrupt nesting ... 47

Figure 5-8 Schematic diagram of interrupt bite .. 48

Figure 5-9 Example of interrupted non-vector processing mode (always nesting is always supported) 50

Figure 5-10 Three successive (non-vector processing mode) interrupts form a nest 52

Figure 5-11 Schematic diagram of interrupt bite ... 53

Figure 5-12 Example of vector processing mode for interrupts... 54

Figure 5-13 Example of vector processing mode for interrupts (support interrupt nesting) 56

Figure 5-14 Three successive (vector processing mode) interrupts form a nest 57

Figure 6-1 eclic logical structure diagram .. 61

Figure 6-2 eclic relationship structure diagram ... 62

Figure 6-3 Example format of the register clicintctl[i] .. 69

Figure 6-4 How to interpret the digital value of level .. 70

Figure 6-5 Several examples of cliccfg settings ... 70

Figure 7-1 A subset of the modular instructions represented by the lower 26 bits of the misa register 77

Figure 7-2 Status code represented by the fs field .. 80

1. Bumblebee kernel instruction set and CSR introduction

The Bumblebee Processor Core, or Bumblebee core, is a commercial custom made by Nuclei System

Technology in conjunction with Gigadevice for its general purpose MCU products for IoT or other

ultra-low power scenarios. RISC-V processor core.

For an introduction to the hardware features of the Bumblebee kernel, see the Bumblebee Kernel Concise Data Sheet.

This article provides a detailed introduction to the supported instruction architecture.

Note: The Bumblebee core used for this

Page 20

MCU is jointly developed by Nuclei System

Technology and Taiwanese Andes Technology,

and Nuclei System Technology provides

authorization and technical support

services.At present, Nuclei System

Technology can license the mass-proven

N200 series of ultra-low-power commercial

processor cores, as well as research a

variety of high-performance embedded

processor series, and provide customers

with customized services.

1.1. Introduction to the risc-v instruction set

The standard RISC-V instruction set

document version followed by the

Bumblebee kernel is: "Instruction Set

Document Version 2.2"

Page 20

(riscv-spec-v2.2.pdf).Users can

register on the RISC-V Foundation

website to follow and download the full

text (free of charge)

(https://riscv.org/specifications/）。

In addition to the risc-v "instruction

set document version 2.2" English original

text, users can also refer to the Chinese

book "Teach you to design cpu - risc-v

processor articles" appendix a, appendix c

~ g part, its use of popular The easy-to-

understand Chinese systematically explains

the risc-v instruction set standard.

1.2. Bumblebee kernel support instruction set

https://riscv.org/specifications/

Page 20

The RISC-V instruction set is based

on a modular design that can be

flexibly combined according to

configuration.The Bumblebee kernel

supports the following modular

instruction set:

◼ Rv32 architecture: 32-bit address space, general-purpose register width 32 bits.

◼ i: Supports 32 general integer registers.

◼ m: support integer multiplication and division instructions

◼ c: Supports compression instructions with a code length of 16 bits to increase code

density.

◼ a: Support atomic operation instructions.

According to the risc-v architecture

naming convention, the combination of

the above subset of instructions can

be expressed as rv32imac.

1.3. Csr register

Page 11

Some control and status registers (CSRs) are defined in the RISC-V architecture to configure or

record the operational status of some processor cores.The CSR register is a register internal to

Page 20

the processor core and uses its proprietary 12-bit address encoding space.See Chapter 7 for details.

2. Introduction to the Bumblebee kernel privilege architecture

2.1. General introduction

The standard RISC-V privilege schema document version followed by the Bumblebee kernel is:

"Privilege Architecture Document Version 1.10"

(riscv-privileged-v1.10.pdf).Users can register on the RISC-V Foundation website to follow and

download the full text (free of charge) (https://riscv.org/specifications/）。

In addition to the risc-v "privileged architecture document version 1.10" English original text, users can also refer

to the Chinese book "Hands to teach you design cpu - risc-v processor articles" appendix a, appendix c ~ g part, its use of

popular The easy-to-understand Chinese systematically explains the risc-v privilege architecture standard.

2.2. Privilege Modes

The Bumblebee kernel supports two privileged modes (Privilege Modes):

◼ Machine Mode is a required mode, and the code of this Privilege Mode is 0x3.

◼ User Mode is a configurable mode, and the code for this Privilege Mode is 0x0.

2.2.1. Machine Mode (Machine Mode)

The key points of the Bumblebee kernel about Machine Mode are as follows:

◼ After the processor core is reset, it defaults to Machine Mode.

◼ In Machine Mode, the program has access to all CSR registers.

2.2.2. User Mode

Page 12

The key points of the Bumblebee kernel about User Mode are as follows:

https://riscv.org/specifications/

Page 20

◼ Only User Mode qualified CSR registers can be accessed in User Mode, see Section 7.3 for details.

2.2.3. Machine Sub-Mode

The Machine Mode of the Bumblebee kernel may be in four different states, called the machine

submode.

（Machine Sub-Mode）：

◼ Normal machine mode (the encoding of the Machine Sub-Mode is 0x0):

 After the processor core is reset, it is in this submode.If no exception, nmi, or

interrupt is generated after the processor is reset, it will continue to operate

normally in this mode.

◼ Exception handling mode (the encoding of the Machine Sub-Mode is 0x2):

 The processor core is in this state after responding to an exception.

 See Chapter 3 for details on the exception mechanism.

◼ NMI processing mode (the encoding of the Machine Sub-Mode is 0x3):

 The processor core is in this state in response to the nmi.

 See Chapter 4 for details on the nmi mechanism.

◼ Interrupt processing mode (the encoding of the Machine Sub-Mode is 0x1):

 The processor core is in this state after responding to the interrupt.

 See Chapter 5 for details on the interrupt mechanism.

The Machine Sub-Mode currently in the processor core is reflected in the TYP field of the CSR

register msubm, so software can read the currently in the Machine Sub-Mode by reading this CSR

register.For details on the msubm register, see Section 7.5.3.

Note: In the RISC-V architecture, entry exceptions, NMIs, or interrupts are also collectively

referred to as traps.

2.2.4. Mode view

The key points of the processor mode view are as follows:

Page 13

Page 20

◼ According to the architecture definition of RISC-V, the current Machine Mode or User Mode of

the processor is not reflected in any software-visible registers (the processor core maintains

a hardware register that is invisible to the software), so the software program cannot read it.

Look at any of the registers to see the current Machine Mode or User Mode.

◼ The four machine sub-modes of the Bumblebee kernel are reflected in the CSR register

msubm

In the TYP domain, the software can

view the currently in the Machine

Sub-Mode by reading this CSR

register.

2.2.5. Machine Mode to User Mode Switch

The mret instruction can be executed

directly in Machine Mode.Switching

from Machine Mode to User Mode is only

possible

The execution of the mret instruction

occurs.Since the Mode Mode may be in

four different states as described in

Section 2.2.32.2.3, 设置

Introduced as follows:

◼ If in normal machine mode, the hardware behavior of executing the mret instruction is

the same as executing the mret instruction in exception handling mode, see Section 3.5

Page 20

for details.

 Therefore, if you want to switch from Machine Mode to User Mode in normal

machine mode, you need to modify the value of MTP field in mstatus first, and

then execute the mret instruction to achieve the effect of mode switching.A

typical program code snippet looks like this:

/* Switch Machine sub-mode to User mode */

Li t0, MSTATUS_MPP // The value of MSTATUS_MPP is 0x00001800, which corresponds to the MPP bit field of mstatus.
// See Section 7.4.7 for bitfield details for mstatus.

csrc mstatus， t0 // Clear the MPP bit field of the
mstatus register to 0 la t0, 1f // Assign the PC address
where the previous label 1 is located to t0 csrw mepc, t0 //
Assign the value of t0 to the CSR register mepc
mret // Executing the mret instruction will switch the mode to User Mode and execute from the
previous label 1

// program (label 1 is the position of the next instruction of mret)

1: // position of tag 1

◼ If the hardware behavior of the mret instruction is executed in exception handling mode,

see Section 3.5 for details.

 In general, the mret instruction is used to exit from exception handling mode to

the mode before entering the exception.

 If you explicitly want to exit from Machine Mode to User Mode (or normal

machine mode), you need to modify the value of mstatus' MPP field first, and

then execute the mret instruction to achieve the mode switch effect.

◼ If the hardware behavior of the mret instruction is executed in interrupt processing mode,

see Section 5.7 for details.

 In general, the mret instruction is used to exit from interrupt processing mode to

the mode before entering the interrupt.

Page 14

 If you explicitly want to exit from Machine Mode to User Mode (or normal

machine mode), you need to modify the value of mstatus' MPP field first, and

then execute the mret instruction to achieve the mode switch effect.

◼ If the hardware behavior of the mret instruction is executed in NMI processing mode, see Section

4.4 for details.

 In general, the mret instruction is used to exit from NMI processing mode to

normal machine mode.

 If you explicitly want to exit from Machine Mode to User Mode (or normal

machine mode), you need to modify the value of mstatus' MPP field first, and

Page 20

then execute the mret instruction to achieve the mode switch effect.

note:

◼ Executing the mret instruction directly in User Mode will generate an Illegal Instruction exception.

2.2.6. User Mode to Machine Mode Switch

Switching from the User Mode to

the Machine Mode of the Bumblebee

kernel can only occur via exceptions,

response interrupts, or NMI:

◼ The response exception enters the exception handling mode.See Section 3.4 for details.

 Note: The software can force the ecall exception handler by calling the ecall

instruction.

◼ The interrupt processing mode is entered in response to the interrupt.See Section 5.6 for

details.

◼ In response to nmi enter the nmi processing mode.See section 4.3 for details.

2.2.7. Interrupt, exception, nmi nesting

Interrupts and exceptions can nest

themselves, and nmi can't nest itself:

◼ In nmi processing mode, if nmi occurs again, the new nmi will be masked, so nmi cannot self-nesert,

see section 4.6 for details.

◼ In exception handling mode, if an exception occurs again, this is an abnormal nesting
situation, see Section 3.73.7 for information.

Page 20

Setting
(in Details.

◼ In interrupt processing mode, if an interrupt occurs again, this is an interrupt
nesting situation, see Section 5.15.11.
Setting

(in

Page 15

Solve the details.

Interrupts, exceptions, and nmis may

also nest with each other, as follows:

◼ When an exception occurs in the interrupt processing mode, the exception processing

mode is entered.

◼ If an exception occurs in the nmi processing mode, the exception handling mode is entered.

◼ When nmi occurs in the interrupt processing mode, it enters the nmi processing mode.

◼ When nmi occurs in the exception handling mode, it enters the nmi processing mode.

◼ Note: In nmi and exception mode, the default interrupt bit is automatically turned off by the hardware, so it will

not respond to the interrupt.

In order to be able to guarantee that

the exception and the NMI can be

restored to the previous state

(Recoverable) after they are nested

with each other,

The Bumblebee kernel implements a

"Two Levels of NMI/Exception State

Page 20

Save Stacks" technique, see Section

4.6 for more details.

2.3. Physical memory protection (pmp)

Since the Bumblebee core is a low-

power core for the microcontroller

domain, it does not support virtual

address management units.

(Memory Management Unit), so all

address access operations are

physical addresses used.In order to

isolate and protect permissions

based on different memory physical

address ranges and different

Privilege Modes, the RISC-V

architecture standard defines a

physical memory protection mechanism

Page 20

(Physical Memory Protection (PMP)

unit.

Note: The Bumblebee kernel does not

support PMP units.

3. Bumblebee kernel exception mechanism introduction

3.1. Abnormal overview

Exception mechanism, that is, the

processor core suddenly encounters

an abnormal event in the process of

sequentially executing the program

instruction stream and aborts

execution of the current program,

and then processes the exception

instead. The main points are as

follows:

◼ The "exceptional thing" that the processor encounters is called an

Page 20

exception.An exception is caused by an internal event in the processor or an

event in the execution of the program, such as a hardware failure, a program

failure, or the execution of a special system service instruction. In short,

it is an internal cause.

Page 20

◼ After the exception occurs, the processor enters the exception service handler.

3.2. Abnormal shielding

The exception specified in the

risc-v architecture cannot be masked,

which means that once an exception

occurs, the processor will stop the

current operation and enter the

exception handling mode.

3.3. Abnormal priority

There may be multiple instances of

exceptions in the processor core, so

exceptions also have priority.The

priority of the exception is asTable

3-1 设置

Table 3-1 As shown in the figure, the

smaller the exception number, the higher

Page 20

the priority of the exception.
设

置

3.4. Enter exception handling mode

When entering an exception, the

hardware behavior of the Bumblebee

kernel can be briefly described as

follows.Note that the following

hardware behavior is done

simultaneously in one clock cycle:

◼ The execution of the current program flow is stopped and the execution begins with the PC

address defined by the CSR register mtvec.

◼ Update the relevant csr registers, which are the following registers:

 mcause（Machine Cause Register）

 mepc（Machine Exception Program Counter）

 mtval（Machine Trap Value Register ）

 mstatus（Machine Status Register）

◼ Update the Privilege Mode of the processor core and the Machine Sub-Mode.

The overall process of abnormal

Page 20

responseFigure 3-1 Figure 3-1 Shown.
 设置

设置

Page 20

Figure 3-1 Overall

process of abnormal

response

These will be detailed below.

3.4.1. Execute from the PC address defined by mtvec

The PC address that the Bumblebee

kernel jumps after encountering an

exception is specified by the CSR

register mtvec.

The mtvec register is a readable

and writable CSR register, so the

Page 20

software can programmatically change

the value.The detailed format of the

mtvec register is shown in Table 7-3

in Table 7-3.

3.4.2. Update CSR register mcause

When the Bumblebee kernel enters

an exception, the CSR register

mcause is updated (hardware

automatically) to reflect the

current type of exception. The

software can read this register to

query the specific cause of the

exception.

The detailed format of the mcause

Page 20

register is shown in Table 7-6, Table

7-6, where the lower 5 bits are the

exception number field, which is used

to indicate various types.

The same type of exception, such asTable

3-1 Table 3-1 Shown. 设置

设置

Page 20

Table 3-1 Exception Code in the mcause Register

Exception

number

（Exception

Code）

Exception and

interrupt type

Synchrono

us

Asynchron

ous

desc

ript

ion

0 Instruction address

misaligned

Synchronize The instruction pc address is not

aligned.

Note: This exception type is

configured with the "c" extension

It is not possible to have a
subset of instructions in the
processor.

1 Instruction access error

(Instruction
access fault）

Synchronize Fetch instruction fetch error.

2 Illegal instruction

(Illegal
instruction）

Synchronize Illegal order.

3 Breakpoint Synchronize The RISC-V architecture defines

the EBREAK instruction, which

occurs when the processor

executes the instruction and

enters the exception service

routine.This instruction is

often used by the debugger

(Debugger).

Break point
4 Read memory address

misaligned

Synchronize The Load instruction fetch address

is not aligned.

Note: The Bumblebee kernel does

not support data memory read and

write operations with unaligned

addresses, so

This exception is raised when the
access address is not aligned.

5 Read memory access error

(Load

access fault）

Inexact

asynchronous

Load instruction fetch error.

6 Write memory and amo

address are not aligned

（Store/AMO address

misaligned）

Synchronize The Store or AMO instruction

fetch address is not

aligned.Note: The Bumblebee

kernel does not support data

memory read and write operations

with unaligned addresses, so

this happens when the access

address is not aligned.

often.
7 Write memory and amo access

error

（Store/AMO access fault）

Inexact

asynchronous

Store or AMO instruction fetch

error.

Page 20

8 User mode environment call

（Environment call from

U-mode）

Synchronize The ecall instruction is

executed in User Mode.The RISC-V

architecture defines the ecall

instruction, which occurs when

the processor executes the

instruction.

Into the exception service

program.This instruction is

often used by software to force

entry into the exception mode.

11 Machine mode environment

call

（Environment call from

M-mode）

Synchronize Execute the ecall command in

Machine Mode.The RISC-V

architecture defines an ecall

instruction that, when executed

by the processor, will cause an

exception to enter the exception

service routine.This instruction

is often used by software

Use, forcibly enter the abnormal
mode.

3.4.3. Update CSR register mepc

The return address of the Bumblebee

kernel when exiting the exception is

determined by the CSR register mepc

(Machine Exception Program

Counter) Save.When an exception is

entered, the hardware will

automatically update the value of

the mepc register, which will be

used as the return address for the

Page 20

exit exception. After the exception

is over, it can use its saved PC

value to return to the program point

that was previously stopped.

note:

Page 25

◼ When an exception occurs, the value of the exception return address mepc is updated to

the instruction PC where the exception occurred.

◼ Although the mepc register is automatically updated by hardware when an exception occurs, the

mepc register itself is a readable and writable register, so software can also write to it

directly to modify its value.

3.4.4. Update CSR register mtval

When the Bumblebee kernel enters

an exception, the hardware will

automatically update the CSR

register mtval (Machine Trap Value

Register) to reflect the memory

access address or instruction

encoding that caused the current

exception:

◼ If an exception is caused by a memory access, such as an exception caused by a

hardware breakpoint, instruction fetch, or memory read and write, the address

of the memory access is updated to the mtval register.

◼ If the exception is caused by an illegal instruction, the instruction code of the

instruction is updated to the mtval register.

Page 25

3.4.5. Update the CSR register mstatus

The detailed format of the mstatus

register is shown in Table 7-2,

Table 7-2. When the Bumblebee kernel

enters an exception, the hardware

will automatically update some

fields of the CSR register mstatus

(Machine Status Register):

◼ The value of the mstatus.MPIE field is updated to the value of the mstatus.MIE field

before the exception occurred, as described in Sections 8.2 and 8.2. 设置

Shown.The role of the

mstatus.MPIE field is to use the

value of mstatus.MPIE to recover

the mstatus.MIE value before the

exception occurred after the

exception.

Page 25

◼ The value of the mstatus.MIE field is updated to 0 (meaning that the

interrupt is globally closed after entering the exception service routine,

all interrupts will be masked and not responding).

◼ The value of the mstatus.MPP field is updated to the Privilege Mode before the

exception occurred, as described in Sections 8.2 and 8.2. 设置

Show.The role of the mstatus.MPP

field is to use the value of

mstatus.MPP to recover the

Privilege Mode before the

exception occurred after the

exception.

3.4.6. Update Privilege Mode

Exceptions need to be handled in

Machine Mode. When entering an

exception, the processor kernel's

Privilege Mode

Updated to machine mode.

Page 25

3.4.7. Update Machine Sub-Mode

The Machine Sub-Mode of the

Bumblebee kernel is reflected in

real time in the msubm.TYP field of

the CSR register.When an exception

is entered, the Machine Sub-Mode of

the processor core is updated to the

exception handling mode, so:

◼ The value of the msubm.PTYP field of the CSR register is updated to the Machine Sub-

Mode before the exception occurred.

(The value of the msubm.TYP field),

as described in Sections 8.2 and

8.2.The role of the msubm.PTYP

domain is in the exception 设置

After the end, you can use the value

of msubm.PTYP to recover the Machine

Sub-Mode value before the exception

occurred.

Page 25

◼ The value of the msubm.TYP field of the CSR register is updated to "Exception Handling

Mode" as described in Sections 8.2 and 8.2. 设置

It is shown that the current mode is

already in the "abnormal processing

mode".

Figure 3-2 Changes to the csr register when entering/exiting an exception

3.5. Exit exception handling mode

After the program completes the

exception handling, it eventually

needs to exit from the exception

service.

Since the exception handling is in

Machine Mode, the software must use

the mret instruction when exiting the

exception.The hardware behavior of

Page 25

the processor after executing the

mret instruction is as follows.Note

that the following hardware behavior

is done simultaneously in one clock

cycle:

◼ The execution of the current program flow is stopped and the execution begins with the PC

address defined by the CSR register mepc.

◼ Update the CSR register mstatus (Machine Status Register) as shown in Sections 8.2 and

8.2, and 设置

Update the Privilege Mode of the

processor core and the Machine Sub-

Mode.

设置 The overall process of exiting an anomalyFigure 3-3 Figure 3-3 Show.
设置

Page 25

Figure 3-3 Exiting the

abnormal overall

process

These will be detailed below.

3.5.1. Execute from the PC address defined by mepc

When an exception is entered, the

mepc register is updated

simultaneously to reflect the

instruction PC value at which the

Page 25

exception was encountered.Through

this mechanism, it means that after

the execution of the mret

instruction, the processor returns

to the PC address of the instruction

that encountered the exception at

that time, so that the program

stream that was previously aborted

can be executed.

Note: You may need to use software

to update the value of mepc before

exiting the exception.For example, if

an exception is generated by ecall or

ebreak, the value of mepc is updated

Page 25

to ecall or ebreak to command its own

PC.So if the exception returns, if

you use it directly
The mepc saved PC value as the return
address will jump back to the ecall or
ebreak instruction, causing an infinite
loop (execution)

The ecall or ebreak instruction

causes the exception to be re-

entered.The correct way is to change

the mepc to the next instruction in

the exception handler. Since

ecall/ebreak is now a 4-byte

instruction, rewrite the setting

mepc=mepc+4.

3.5.2. Update the CSR register mstatus

Page 25

The detailed format of the mstatus

register is shown in Table 7-2 in

Table 7-2.The hardware will

automatically update the CSR after

executing the mret instruction

Some fields of the register mstatus:

◼ The value of the mstatus.MIE field is restored to the value of the current

mstatus.MPIE.

◼ The value of the current mstatus.MPIE field is updated to 1.

◼ The updated values of the mstatus.MPP domain are divided into the following two cases:

 When user mode U-mode is configured, mstatus.MPP is updated to 0x0.

 When user mode U-mode is not configured, mstatus.MPP is updated to 0x11.

When entering an exception, the value

of mstatus.MPIE was updated to the

mstatus.MIE value before the exception

occurred, such as the section and the

first

Section 8.2 and Section 8.2.After the

Page 25

mret instruction is executed, the value

of the mstatus.MIE field is restored to

the value of mstatus.MPIE. 设置

Through this mechanism, it means that

after the mret instruction is executed,

the mstatus.MIE value of the processor

is restored to the value before the

exception occurred.

(Assuming the previous mstatus.MIE

value is 1, it means the interrupt was

re-opened globally).

3.5.3. Update Privilege Mode

When entering an exception, the value

of mstatus.MPP was updated to the

Privilege Mode before the exception

occurred, while the mret was executed.

Page 25

After the instruction, the processor's

Privilege Mode is restored to the value

of mstatus.MPP, as described in Sections

8.2 and 8.2. 设置

Through this mechanism, the processor

is guaranteed to return to the

Privilege Mode of the processor before

the exception occurred.

3.5.4. Update Machine Sub-Mode

The Machine Sub-Mode of the Bumblebee

kernel is reflected in real time in

the msubm.TYP field of the CSR

register.Executing

After the mret instruction, the

hardware will automatically restore the

processor's Machine Sub-Mode to the

value of the msubm.PTYP field:

Page 25

◼ When an exception is entered, the value of the msubm.PTYP field is updated to the Machine

Sub-Mode value before the exception occurred.After exiting the exception with the mret

instruction, the hardware restores the value of the processor Machine Sub-Mode to

The value of the msubm.PTYP field

is shown in Figure 4-2 Figure 4-

2.Through this mechanism, it

means that after exiting the

exception, the processor's

Machine Sub-Mode is restored to

the Machine Sub-Mode before the

exception occurred.

Page 25

3.6. Exception service program

When the processor enters an

exception, it starts executing a new

program from the PC address defined

by the mtvec register. The program is

usually an exception service program,

and the program can also decide to

jump further by querying the

exception number in the mcause

(Exception Code). Specific exception

service procedures.For example, when

the value in the program query mcause

is 0x2, it is known that the

exception is an illegal instruction

Page 25

error.
(Illegal Instruction), so you can jump
further to the illegal instruction
error exception service subroutine.

Note: Since there is no hardware to

automatically save and restore the

context in the entry exception and

exit exception mechanism, the

software needs to explicitly use the

instructions (written in assembly

language) for context saving and

recovery.Please understand this in

conjunction with a complete exception

service code example for the mcu chip.

3.7. Abnormal nesting

Page 25

The Bumblebee kernel supports two

levels of NMI/Exception State Save

Stacks. See Section 4.6 for more

details.

Page 27

4. Introduction to the Bumblebee kernel NMI mechanism

4.1. Nmi overview

NMI (Non-Maskable Interrupt) is a

special input signal of the

processor core, often used to

indicate system-level emergency

errors (such as external hardware

failures, etc.).After encountering

the NMI, the processor core should

immediately abort execution of the

current program and instead process

the NMI error.

4.2. Nmi shielding

Page 27

The NMI in the Bumblebee kernel

cannot be masked, which means that

once the NMI occurs, the processor

will stop the current operation and

process the NMI.

4.3. Enter nmi processing mode

When entering NMI processing mode,

the hardware behavior of the Bumblebee

kernel can be briefly described as

follows.Note that the following

hardware behavior is done

simultaneously in one clock cycle:

◼ The execution of the current program flow is stopped and the execution begins with the PC

address defined by the CSR register mnvec.

◼ Update the relevant csr registers, which are the following registers:

Page 27

 mepc（Machine Exception Program Counter ）

 mstatus（Machine Status Register）

 mcause（Machine Cause Register）

◼ Update the Privilege Mode of the processor core and the Machine Sub-Mode.

The overall process of nmi response is

shown in Figure 4-1 Figure 4-1. 设置

设置

Figure 4-1 The overall

process of nmi response

These will be detailed below.

Page 27

4.3.1. Execute from the PC address defined by mnvec

The PC address that the Bumblebee

kernel jumps into after

encountering the NMI is specified

by the CSR register mnvec.The

values of the mnvec register are as

follows:
◼ When mmisc_ctl[9]=1, the value of the mnvec register is equal to mtvec, ie the NMI has the same Trap as the

exception.

Entrance address.
◼ When mmisc_ctl[9]=0, the value of the mnvec register is equal to reset_vector, and the reset_vector is the processor.

The value of the PC after reset.

4.3.2. Update CSR register mepc

The return address of the Bumblebee

kernel when exiting the NMI is

determined by the CSR register mepc

(Machine Exception Program

Page 27

Counter) Save.Upon entering the NMI,

the hardware will automatically update

the value of the mepc register, which

will be used as the exit NMI

The return address, after the end

of nmi, can use its saved pc

value to return to the program

point that was previously

stopped.note:

Page 27

◼ When the NMI occurs, the NMI return address mepc is pointed to the next instruction that has

not yet been executed (because the instruction at NMI has been executed correctly).Then, after

exiting the NMI, the program will return to the previous program point and re-execute from the

next instruction.

◼ Although the mepc register is automatically updated by hardware when the NMI occurs, the mepc

register itself is a readable and writable register, so the software can also write this

register directly to modify its value.

4.3.3. Update CSR register mcause

The detailed format of the mcause

register is shown in Table 7-6,

Table 7-6.When the Bumblebee kernel

enters the NMI, the hardware

automatically saves the current trap

ID to mcause to indicate the cause

of the trap.Interrupts, exceptions,

and NMIs have their own special Trap

IDs.

The NMI Trap ID has the following two

values:
◼ When mmisc_ctl[9]=1, the NMI Trap ID is 0xfff.

Page 27

◼ When mmisc_ctl[9]=0, the NMI Trap ID is 0x1.

By assigning a specific Trap ID to

each Trap, you can identify the cause

of the Trap. The software can design

a specific handler to process the

Trap based on the cause of the Trap.

4.3.4. Update the CSR register mstatus

The detailed format of the mstatus

register is shown in Table 7-2,

Table 7-2. When the Bumblebee kernel

enters the NMI, the hardware will

automatically update some fields of

the CSR register mstatus:
◼ The value of the mstatus.MPIE field is updated to the value of the mstatus.MIE field

before the NMI occurs, such asFigure 4-2 Figure 4-2 Shown.

The role of the mstatus.MPIE field

is to recover the NMI using the

value of mstatus.MPIE after the end

Page 27

of the NMI.

The mstatus.MIE value before the

occurrence.
◼ The value of the mstatus.MIE field is updated to 0 (meaning that the interrupt

is globally closed after entering the NMI server and all interrupts will be

masked and not responding).

◼ The value of the mstatus.MPP field is updated to the Privilege Mode before the

NMI occurs.When the role of the mstatus.MPP field is saved, after the NMI is

finished, the value of mstatus.MPP can be used to recover the Privilege Mode

before the NMI occurs.

4.3.5. Update Privilege Mode

NMI processing is done in Machine

Mode, so when entering NMI, the

processor kernel's privileged mode

(Privilege Mode) switches to machine

mode.

Page 28

4.3.6. Update Machine Sub-Mode

The Machine Sub-Mode of the Bumblebee

kernel is reflected in real time in

the msubm.TYP field of the CSR

register.Entering

At NMI, the Machine Sub-Mode of the

processor core is updated to NMI

processing mode, so:
◼ The value of the msubm.PTYP field of the CSR register is updated to the Machine Sub-

Mode before the NMI occurs.

(the value of the msubm.TYP field),

such asFigure 4-2 Figure 4-2

Shown.The role of the msubm.PTYP

domain is at the end of the NMI 设置

After that, you can use the value of

msubm.PTYP to recover the Machine

Sub-Mode value before the NMI

occurred. 设置

◼ The value of the msubm.TYP field of the CSR register is updated to "NMI processing

mode" such asFigure 4-2 Figure 4-2 As shown 设置

The real-time reflection of the

Page 28

current mode is already "nmi

processing mode". 设置

Figure 4-2 Changes to the csr register when entering/exiting nmi

4.4. Exit nmi processing mode

When the program finishes nmi

processing, it finally needs to exit

from the nmi server and return to the

main program.

Since the NMI processing is in

Machine Mode, the software must use the

mret instruction when exiting the

NMI.The hardware behavior of the

processor after executing the mret

Page 28

instruction is as follows.Note that the

following hardware behavior is done

simultaneously in one clock cycle:

◼ The execution of the current program flow is stopped and the execution begins with the PC

address defined by the CSR register mepc.

◼ Update the CSR register mstatus.

◼ Update Privilege Mode and Machine Sub-Mode.

The overall process of exiting nmi is

as followsFigure 4-3 Figure 4-3 所示。
 设置

设置

Page 30

Figure 4-3 Exiting the

overall process of nmi

These will be detailed below.

4.4.1. Execute from the PC address defined by mepc

Upon entering the NMI, the mepc

register is updated simultaneously to

reflect the PC value of the next

instruction that encountered the NMI

Page 30

at that time.Through this mechanism,

it means that after the execution of

the mret instruction, the processor

returns to the PC address of the next

instruction that encountered the NMI

at that time, so that the program

stream that was previously aborted can

be executed.

4.4.2. Update the CSR register mstatus

The detailed format of the mstatus

register is shown in Table 7-2, Table

7-2. After executing the mret

instruction, the hardware will

automatically update the CSR.

Page 30

Register mstatus some fields:

◼ The value of the mstatus.MIE field is restored to the value of the current

mstatus.MPIE.

◼ The value of the mstatus.MPIE field is updated to 1.

◼ The updated values of the mstatus.MPP domain are divided into the following two cases:

 When user mode U-mode is configured, mstatus.MPP is updated to 0x0.

Page 35

 When user mode U-mode is not configured, mstatus.MPP is updated to 0x11.

Upon entering the NMI, the value

of mstatus.MPIE was updated to the

mstatus.MIE value before the NMI

occurred.After the mret instruction

is executed, the value of

mstatus.MIE is restored to the

value of mstatus.MPIE, such

asFigure 4-2 Figure 4-2

Shown.Through this mechanism, it

means that after the mret

instruction is executed, the

processor's mstatus.MIE value is

restored to the value before the

Page 35

NMI occurred (assuming the

previous mstatus.MIE value is 1,

it means that the interrupt is

re-opened globally).

4.4.3. Update Privilege Mode

When entering the NMI, the value of

mstatus.MPP was updated to the

Privilege Mode before the NMI

occurred, while it was executing.

After the mret instruction, the

processor's Privilege Mode is

restored to the value of

mstatus.MPP, such asFigure 4-2

Figure 4-2 Shown.This mechanism

Page 35

ensures that the processor

returns to the Privilege Mode of

the processor before the NMI

occurred.

4.4.4. Update Machine Sub-Mode

The Machine Sub-Mode of the

Bumblebee kernel is reflected in

real time in the msubm.TYP field of

the CSR register.Executing

After the mret instruction, the

hardware will automatically restore

the processor's Machine Sub-Mode to

the value of the msubm.PTYP field:

◼ When entering the NMI, the value of the msubm.PTYP field was updated to the Machine Sub-Mode

before the NMI occurred.

value.After exiting the NMI with

Page 35

the mret instruction, the

hardware restores the value of

the processor Machine Sub-Mode to

The value of the msubm.PTYP

field, such asFigure 4-2

Figure 4-2 Shown.This mechanism

means that after exiting the

NMI, the processor's Machine

Sub-Mode is restored to the

Machine Sub-Mode before the NMI

occurred.

4.5. Nmi service program

When the processor enters the NMI,

it begins to execute the new

Page 35

program from the PC address defined

by the mnvec register, which is

usually

Nmi service program.

Note: Since there is no hardware

to automatically save and restore

the context in the nmi and exit nmi

mechanisms, the software needs to

explicitly use the instructions

(written in assembly language) for

context saving and recovery.Please

combine a complete mcu chip

The nmi server code example

understands it.

Page 35

4.6. Nmi/abnormal nesting

The Bumblebee kernel is customized

likeFigure 4-4 Figure 4-4 Two Levels

of NMI/Exception State Save Stacks,

which can save up to three levels of

NMI/Exception processor state, can

achieve secondary recoverable

NMI/Exception nesting.

Note: Because the NMI's response is

masked on the hardware when the

processor is in the NMI state, the

NMI cannot self-nesert.The

Nmir/Exception Nesting of the

Page 35

Bumblebee kernel supports only the

following three nestings:

◼ Nmi nesting exception

◼ Exception nesting exception

◼ Abnormal nesting nmi

Figure 4-4 Schematic diagram of the two-stage

NMI/Exception state stack mechanism of the Bumblebee

kernel

4.6.1. Enter nmi/exception nesting

In response to NMI and exceptions,

the hardware behavior of the

Bumblebee kernel is asFigure 4-4

Figure 4-4 As shown, it can be

Page 35

briefly described as follows.

◼ Stop executing the current program flow and start executing from the new pc

address.

 If the response is an exception, it is executed from the PC address stored by

mtvec.

Page 35

 If the response is NMI, it starts from the PC address stored by mnvec.

◼ Update the relevant csr registers, which are the following registers and their associated

fields:

 Mepc: Record the PC before the current NMI/exception, and recover the

NMI/PC before the exception occurs from the mepc when exiting the

NMI/Exception.

 Msaveepc1: The first-level NMI/exception state stack records the PC before

the first-level nested NMI/exception (NMI/Exception nested by the current

NMI/Exception), that is, the mepc value before the current NMI/Exception

occurs, and exits. The value of mepc can be recovered from msaveepc1 when

NMI/Exception.

 Msaveepc2: The second-level NMI/Exception State Stack records the second-

level nested NMI/Exception (is nested by the first level

NMI/Exception Nested

NMI/Exception) The PC before the

occurrence, that is, the current

NMI/msaveepc1 before the

occurrence of the abnormality

The value of msaveepc1 can be

recovered from msaveepc2 when

exiting NMI/Exception.

 mstatus:

Page 35

◆ Mpie: Record the current mie before the nmi/abnormal occurrence.

◆ MPP: Record the Privilege Mode before the current NMI/Exception occurred.

 msavestatus:

◆ Mpie1: The first-level nmi/abnormal state stack records the mie before the

first-level nested nmi/abnormality, that is, the mpie before the current

nmi/abnormality, and the value of mpie can be restored from mpie1 when

exiting the nmi/exception.

◆ Mpie2: The second-level nmi/abnormal state stack records the mie

before the second-level nested nmi/abnormality, that is, the mpi1

before the current nmi/exception occurs, and the value of mpie1 can be

recovered from mpie2 when exiting nmi/anomaly.

◆ MPP1: The first-level NMI/abnormal state stack records the first-level

nested NMI/Privilege Mode before the occurrence of the exception, that

is, the MPP before the current NMI/exception occurs, and can be

recovered from the MPP1 when the NMI/Exception is exited.

The value of mpp.

◆ MPP2: The second-level NMI/Exception State Stack records the second-

level nested NMI/Privilege Mode before the occurrence of the exception,

that is, the current NMI/MPP1 before the exception occurs, and the

MMI2 can be recovered when the NMI/Exception is exited.

The value of mpp1.

Page 35

 Mcause: Records the cause of the current NMI/Exception.

 Msavecause1: The first-level NMI/Exception Status Stack records the first-

level nested NMI/Exception Cause.

 Msavecause2: The second-level NMI/Exception Status Stack records the second-

level nested NMI/Exception Cause.

 msubm:

◆ TYP: Records the current NMI/exception Trap type.

◆ PTYP: records the type of trap that the processor is in before the

current NMI/exception occurs.

◆ PTYP1: The first-level NMI/abnormal state stack records the Machine

Sub Mode before the first-level nested NMI/abnormality, that is, the

current NMI/PTYP before the abnormality occurs. When the NMI/Exception

is exited, the value of PTYP can be restored from PTYP1.

◆ PTYP2: The second-level NMI/abnormal state stack records the second-level

nested NMI/Machine Sub Mode before the exception occurs, that is, the current

NMI/PTYP1 before the abnormality occurs, and the value of PTYP1 can be

restored from the PTYP2 when the NMI/abnormal is exited.

◼ NMI/Exception Handling is done in Machine Mode, so when entering

NMI/Exception, the Privilege Mode of the processor core switches to Machine

mode.

4.6.2. Exit nmi/exception nesting

After the program completes the

NMI/Exception handling, it finally

Page 35

needs to exit from the NMI/Exception

Service program and return to the

superior NMI/Exception or the main

program. Before exiting, it is

necessary to restore the processor

state from the relevant registers.

This is done by the mret instruction,

and the processor executes. The

hardware behavior after the mret

instruction is as followsFigure 4-4

Figure 4-4Can be briefly described

as follows.

◼ The execution of the current program flow is stopped and the execution begins with

the PC address defined by the CSR register mepc.

◼ Update the relevant csr registers, which are the following registers and their associated

fields:

Page 35

 Mepc(Machine Exception Program Counter): Reverts to the PC stored in the

first level of nested NMI/Exception in msaveepc1.

 Msaveepc1: first-level NMI/exception state stack, mret occurs from second-

level NMI/exception state stack

Msaveepc2 restores the register

msaveepc1 value, which is

restored to the second level of

nesting stored in msaveepc2

Page 35

Nm / pc before the occurrence of

an abnormality.

 mstatus（Machine Status Register）

◆ Mpie: Reverts to mie before the first-level nested nmi/exception stored

in mpie1.

◆ MPP: Reverts to the first level of nested NMI/Privilege Mode before the

exception occurred in MPP1.

 msavestatus:

◆ MPIE1: First level NMI/Exception state stack, mret occurs from second

level NMI/Exception state stack

MPIE2 restores the value of

the register field

msavestatus.MPIE1, which is

restored to the MIE before the

second-level nested

NMI/exception stored in MPIE2.

◆ MPP1: first-level NMI/exception state stack, mret occurs from second-

level NMI/exception state stack

Page 35

MPP2 restores the value of

the register field

msavestatus.MPP1, which is

restored to the Privilege

Mode before the second-level

nested NMI/exception stored

in MPP2.

 Mcause(Machine Cause Register): Revert to the first level of nesting stored

in msavecause1

The cause of nmi/abnormality.

 Msavecause1: first-level NMI/exception state stack, mret occurs from second-

level NMI/exception state stack

Msavecause2 restores the value

of register msavecause1, which

is the reason for reverting to

the second-level nested

Page 35

NMI/exception stored in

msavecause2.

 msubm（Machine Sub-Mode Register）

◆ TYP: Reverts to the Trap type of the processor before the current

NMI/Exception occurred in msubm.PTYP.

◆ PTYP: Revert to the first-level nested NMI/Exception occurrence pre-

processor stored in msubm.PTYP1

Trap type.

◆ PTYP1: First level NMI/Exception Status Stack, mret occurs from the

second level NMI/Exception Status Stack

The value of the PTYP2

recovery register field

msubm.PTYP1 is restored to the

Trap type of the second-level

nested NMI/pre-existing

processor stored in

msubm.PTYP2.

Page 35

◼ Update the processor's Privilege Mode based on the value of the mstatus.MPP field.

Page 43

5. Bumblebee kernel interrupt mechanism introduction

5.1. Interrupt overview

Interrupt mechanism, that is, the

processor core is suddenly interrupted by

other requests during the execution of

the program instruction flow, and the

execution of the current program is

aborted, and then other things are

processed, after waiting for other things

to be processed, and then Go back to the

point where the program was interrupted

before continuing to execute the previous

program instruction stream.

Some basic points of knowledge of the

Page 43

interruption are as follows:

◼ The "other request" interrupted by the processor is called the Interrupt Request.

The source of the "other request" is called the interrupt source. The interrupt

source usually comes from outside the kernel. It can also be internal to the core

(becoming an internal interrupt source).

◼ The "other thing" that the processor goes to handle is called the Interrupt Service

Routine (ISR).

◼ Interrupt processing is a normal mechanism, not an error situation.After the

processor receives the interrupt request, it needs to save the scene of the current

program, which is referred to as “save site”.After processing the interrupt

service routine, the processor needs to restore the previous site, thereby

continuing to execute the previously interrupted program, referred to as "recovery

site."

◼ There may be multiple interrupt sources that simultaneously initiate requests to

the processor, and these interrupt sources need to be arbitrated to select which

interrupt source is prioritized.This situation is called "interrupt arbitration",

and different interrupts can be assigned levels and priorities to facilitate

arbitration, so there is a concept of "interrupt level" and "interrupt priority".

5.2. Interrupt controller eclic

As described in Section 7.4.13, the

Bumblebee kernel supports "default

interrupt mode" and "ECLIC interrupt mode"

through different configurations of the

Page 43

software. It is recommended to use "ECLIC

interrupt mode". This article only

introduces "ECLIC interrupt mode".

The Bumblebee kernel implements an

"Improved Core Local Interrupt

(Enhanced Core Local Interrupt)

Controller, ECLIC) can be used to

manage multiple interrupt sources. All

types of interrupts in the Bumblebee

kernel (except for debug interrupts)

are managed by ECLIC. For details on

ECLIC, see Section 6.2. About Bumblebee

Kernel See Section 5.3 for an

introduction to all supported interrupt

Page 43

Internal

interrupt

External Interrupt

Timer Interrupt

Software Interrupt

Interrupt

type

types.

5.3. Interrupt type

The types of interrupts supported by

the Bumblebee kernel are asFigure 5-1

Figure 5-1 Shown in .

Figure 5-1 Schematic diagram

of the interrupt type

These will be detailed below.

5.3.1. External Interrupt

An external interrupt is an interrupt

Page 43

from outside the processor

core.External interrupts allow users

to connect to external interrupt

sources, such as external devices

Interrupts generated by uart, gpio, etc.

Note: The Bumblebee core supports

multiple external interrupt sources,

all of which are managed by ECLIC.

5.3.2. Internal interrupt

The Bumblebee kernel has several

kernel-specific internal interrupts,

namely:

◼ Software Interrupt

◼ Timer Interrupt

Note: The internal interrupts of the

Bumblebee kernel are also managed by

ECLIC.

Page 43

Page 36

5.3.2.1 The main points

of the software

interrupt software

interruption are as

follows:

◼ The Bumblebee kernel implements a TIMER unit, and a msip register is defined in

the TIMER unit to generate software interrupts. See Section 6.1.6 for details.

◼ Note: Software interrupts are also managed by eclic.

5.3.2.2 The main points

of the timer interrupt

timer interrupt are as

follows:

◼ The Bumblebee kernel implements a TIMER unit, and a timer is defined in the TIMER

unit to generate a timer interrupt. See Section 6.1.5 for details.

◼ Note: Timer interrupts are also managed by eclic.

5.3.2.3 Memory access error interrupt

The main points of the "memory access

error exception" conversion are as

follows:

◼ When the Bumblebee kernel encounters a "memory access error exception", it does not generate an exception, but

Page 43

is instead converted into a corresponding internal interrupt, treated as an interrupt.

5.4. Interrupt mask

5.4.1. Interrupt global mask

The Bumblebee kernel interrupt can be

masked, and the MIE field of the CSR

register mstatus controls the global

enable of the interrupt.See Section

7.4.8 for details.

5.4.2. Interrupt source separately shielded

For different interrupt sources,

eclic assigns its own interrupt enable

register to each interrupt source. The

user can configure the eclic registers

to manage the masking of each

Page 43

interrupt source. See Section 6.2.6

for details.

Page 37

5.5. Interrupt level, priority and arbitration

When multiple interrupts occur at

the same time, arbitration is

required.For the Bumblebee core

processor, ECLIC manages all

interrupts in a unified manner.ECLIC

assigns its own interrupt level and

priority register to each interrupt

source, which can be configured by

the user.
The eclic register manages the level
and priority of each interrupt source.
When multiple interrupts occur

Page 43

simultaneously, eclic arbitrates the
level.

And the highest priority interrupt, such

asFigure 5-2 Figure 5-2 Shown in .See

Section 6.2.9 for details. 设置

设置

Figure 5-2 Schematic

diagram of interrupt

arbitration

5.6. Enter interrupt processing mode

The hardware behavior of the

Bumblebee kernel can be briefly

described as follows in response to

an interrupt.Note that the following

Page 43

hardware behavior is done

simultaneously in one clock cycle:

◼ Stop executing the current program flow and start executing from the new pc address.

◼ Entering the interrupt will not only let the processor jump to the above pc address to

start execution, but also let the hardware update several other ones at the same time.

The csr registers, as shown in

Figure 5-4 and Figure 5-4, are the

following registers: 设置

设置

 mepc（Machine Exception Program Counter）

 mstatus（Machine Status Register）

 mcause（Machine Cause Register）

 mintstatus （Machine Interrupt Status Register）

Page 38

◼ In addition to this, entering the interrupt also updates the Privilege Mode of the

processor core and the Machine Sub-Mode.

◼ The overall processFigure 5-3 Figure 5-3 Shown in . 设置

设置

Page 43

Figure 5-3 Overall

response to the

interrupt

These will be detailed below.

5.6.1. Execute from the new pc address

Each interrupt source of ECLIC can

be set to vector or non-vector

processing (via the shv field of

the register clicintattr[i]). The

main points are as follows:

◼ If configured as a vector processing mode, after the interrupt is responded

by the processor core, the processor jumps directly into the target address

stored in the vector table entry of the interrupt.For a detailed description

of the interrupt vector table, see Section 5.8. For a detailed description

Page 43

of the vector processing mode, see Section 5.13.2.

◼ If configured as a non-vector processing mode, the processor jumps directly into the

interrupt after the interrupt is processed by the processor core.

Page 39

Interrupt the shared entry

address.For a detailed

description of the interrupt

non-vector processing mode, see

Section 5.13.1.

5.6.2. Update Privilege Mode

Upon entering the interrupt, the

processor kernel's Privilege Mode is

updated to Machine Mode.

5.6.3. Update Machine Sub-Mode

The Machine Sub-Mode of the

Bumblebee kernel is reflected in

Page 43

real time in the msubm.TYP field of

the CSR register.Upon entering the

interrupt, the Machine Sub-Mode of

the processor core is updated to the

interrupt handling mode, so:

◼ The value of the msubm.PTYP field of the CSR register is updated to the Machine Sub-

Mode (msubm.TYP field before the interrupt occurs).

The value), as shown in Figure 5-4

Figure 5-4.The role of the

msubm.PTYP field is to be able to

use after the end of the interrupt.
 Sett

ing

The value of msubm.PTYP recovers the

Machine Sub-Mode value before the

interrupt occurred.
 Sett

ing

◼ The value of the msubm.TYP field of the CSR register is updated to "interrupt

processing mode", as shown in Figure 5-4 Figure 5-4.
Setting

The current mode is already

Page 43

reflected in the "interrupt

processing mode".
 Sett

ing

5.6.4. Update CSR register mepc

The return address of the

Bumblebee kernel exit interrupt is

specified by the CSR register

mepc.Upon entering the interrupt,

the hardware will automatically

update the value of the mepc

register, which will be used as the

return address of the exit interrupt.

After the interrupt is completed, it

can use its saved PC value to return

Page 43

to the program point that was

previously stopped.

note:

◼ When an interrupt occurs, the interrupt return address mepc is pointed to an

instruction that failed to complete execution due to the occurrence of the

interrupt.Then, after exiting the interrupt, the program will return to the

previous program point and re-execute from the unexecuted instruction stored by

mepc.

◼ Although the mepc register is automatically updated by hardware when an interrupt occurs,

the mepc register itself is a readable and writable register, so software can also write to

it directly to modify its value.

5.6.5. Update the CSR registers mcause and mstatus

The detailed format of the mcause
register is shown in Table 7-6, Table
7-6.CFF hosting when the Bumblebee
kernel enters the interrupt
 Sett

ing

Setting

Page 40

The mcause is updated simultaneously

(hardware automatically), such asFigure

5-4 Figure 5-4 As shown, the details

Page 43

are as follows:

◼ After the current interrupt is responded, a mechanism is needed to record the current

id number of the interrupt source.

 When the Bumblebee core enters the interrupt, the CSR register

mcause.EXCCODE field is updated to reflect the ID number of the ECLIC

interrupt source for the current response, so the software can read the

register to query the specific ID of the interrupt source.

◼ The current interrupt is responded, possibly interrupting the interrupt that

was previously being processed (the interrupt level is relatively low, so it

can be interrupted), and a mechanism is needed to record the Interrupt

Levels of the interrupted interrupt.

 When the Bumblebee core enters the interrupt, the CSR register mcause.MPIL

field is updated to reflect the interrupted interrupt level (the value of

the mintstatus.MIL field).The purpose of the mcause.MPIL field is to use

the value of mcause.MPIL to recover the mintstatus.MIL value before the

interrupt occurred after the end of the interrupt.

◼ After the current interrupt is responded, a mechanism is needed to record

the interrupt global enable state and privileged mode before responding to

the interrupt.

 When the Bumblebee core enters the interrupt, the value of the

mstatus.MPIE field in the CSR register is updated to the global enable

state of the interrupt before the interrupt occurred (the value of the

mstatus.MIE field).The value of the mstatus.MIE field is updated to 0.

(It means that the interrupt is

globally closed after entering the

interrupt service routine, all

interrupts will be masked and not

Page 43

responding).

 When the Bumblebee kernel enters the interrupt, the processor's current

privilege mode (Privilege Mode) switches to Machine Mode, and the value

of the CSR register mstatus.MPP field is updated to the Privilege Mode

before the interrupt occurs.

◼ If the interrupt of the current response is in vector processing mode, the

processor will jump directly into the target address stored in the vector

table entry of the interrupt after responding to the interrupt.For a

detailed description of the interrupt vector processing mode, see Section

5.13.2.In terms of hardware implementation, the processor needs to be

divided into two steps. The first step is to take the stored target address

from the interrupt vector table, and then jump to the target address in the

second step.Then, in the first step of the memory access operation of

"removing the stored target address from the interrupt vector table", a

memory access error may occur, and a mechanism is needed to record such a

special memory access error.

 When the Bumblebee core enters an interrupt, if the interrupt is in vector

processing mode, the CSR register

The value of the mcause.minhv field

is updated to 1 until the "two-

step" operation described above is

completely successful.

The value of the mcause.minhv

field is cleared to 0.Assuming

a memory access error occurs

Page 43

midway, the final processor

will have an Instruction access

fault and the mcause.minhv

field has a value of 1 (not

cleared).

◼ Note: The values of the mstatus.MPIE and mstatus.MPP fields are mirrored with the values of the mcause.MPIE

and mcause.MPP fields, ie, under normal circumstances, the value of the mstatus.MPIE field and the value of

the mcause.MPIE field are always Is completely one

Page 43

As such, the value of the

mstatus.MPP field is always exactly

the same as the value of the

mcause.MPP field.

Figure 5-4 Changes to the csr register when entering/exiting an interrupt

5.7. Exit interrupt processing mode

After the program completes the

interrupt processing, it finally

needs to exit from the interrupt

service routine and return to the

main program.Since the interrupt

processing is in Machine Mode, the

Page 43

software must use the mret

instruction when exiting the

interrupt.The hardware behavior of

the processor after executing the

mret instruction is as follows.Note

that the following hardware behavior

is done simultaneously in one clock

cycle:

◼ The execution of the current program flow is stopped and the execution begins with the

PC address defined by the CSR register mepc.

◼ Executing the mret instruction will not only cause the processor to jump to the above PC

address to start execution, but also let the hardware update several other CSR registers at

the same time, such asFigure 5-4 Figure 5-4 As shown, they are the following

registers:

 mstatus（Machine Status Register）

 mcause（Machine Cause Register）

 mintstatus（Machine Interrupt Status Register）

◼ In addition to this, entering the interrupt also updates the Privilege Mode of the

processor core and the Machine Sub-Mode.

Page 43

Exit

interrup

t

Figure 5-5 Overall

process of exiting the

interrupt

These will be detailed below.

5.7.1. Execute from the PC address defined by mepc

Upon entering the interrupt, the

mepc register is updated

simultaneously to reflect the PC

value at the time the interrupt was

encountered.The software must exit

the interrupt using the mret

Restore Machine Sub-Mode

Restore Privilege Mode

Execute from the PC address defined

by the CSR register mepc

Software must use the mret command

when exiting the interrupt

mintstatus

Update csr

register

mstatus

Page 43

instruction. After executing the mret

instruction, the processor will

resume execution from the pc address

defined by mepc.Through this

mechanism, it means that after the

execution of the mret instruction,

the processor returns to the PC

address when the interrupt was

encountered, so that the program

stream that was previously aborted

can be executed.

5.7.2. Update the CSR registers mcause and mstatus

The detailed format of the mcause

Page 43

register is shown in Table 7-6,

Table 7-6. After executing the mret

instruction, the hardware will

automatically update some fields of

the CSR register mcause:

◼ Upon entering the interrupt, the value of mcause.MPIL was updated to the

mintstatus.MIL value before the interrupt occurred.After exiting the

interrupt with the mret instruction, the hardware restores the value of

mintstatus.MIL to the value of mcause.MPIL.Through this mechanism, it means

that after the exit interrupt, the processor's mintstatus.MIL value is

restored to the value before the interrupt occurred.

◼ Upon entering the interrupt, the value of mcause.MPIE was updated to the mstatus.MIE

value before the interrupt occurred.And use

After the mret instruction exits the

interrupt, the hardware will restore

the mstatus.MIE value to mcause.MPIE

after executing the mret instruction.

Value, such asFigure 5-4 Figure 5-4

Shown.Through this mechanism, it means

that after the interrupt is interrupted,

Page 43

the processor's mstatus.MIE

Page 44

The value is restored to the value

before the interrupt occurred.

◼ Upon entering the interrupt, the value of mcause.MPP was updated to the Privilege Mode

before the interrupt occurred.After exiting the interrupt with the mret instruction,

the hardware restores the processor privilege mode (Privilege Mode) to

The value of mcause.MPP, such

asFigure 5-4 Figure 5-4

Shown.Through this mechanism, it

means that after the exit

interrupt, the processor's

privilege mode (Privilege Mode)

is restored to the mode before

the interrupt occurred.

◼ Note: The values of the mstatus.MPIE and mstatus.MPP fields are mirrored with

the values of the mcause.MPIE and mcause.MPP fields, ie, under normal

circumstances, the value of the mstatus.MPIE field and the value of the

mcause.MPIE field are always It is exactly the same, the value of the

mstatus.MPP field is always exactly the same as the value of the mcause.MPP

field.

5.7.3. Update Privilege Mode

Page 44

After executing the mret instruction,

the hardware will automatically update

the processor's Privilege Mode to the

value of the mcause.MPP field:

◼ Upon entering the interrupt, the value of mcause.MPP was updated to the Privilege Mode

before the interrupt occurred.After exiting the interrupt with the mret instruction,

the hardware restores the processor privilege mode (Privilege Mode) to

The value of mcause.MPP.Through

this mechanism, it means that

after the exit interrupt, the

processor's privilege mode

(Privilege Mode) is restored to

the mode before the interrupt

occurred.

5.7.4. Update Machine Sub-Mode

The Machine Sub-Mode of the Bumblebee

kernel is reflected in real time in

Page 44

the msubm.TYP field of the CSR

register.Executing

After the mret instruction, the

hardware will automatically restore the

processor's Machine Sub-Mode to the

value of the msubm.PTYP field:

◼ When an interrupt is entered, the value of the msubm.PTYP field is updated to the Machine

Sub-Mode value before the interrupt occurred.After exiting the interrupt with the mret

instruction, the hardware restores the value of the processor Machine Sub-Mode to

The value of the msubm.PTYP

field, such asFigure 5-4 Figure

5-4 Shown.This mechanism means

that after the exit interrupt,

the processor's Machine Sub-Mode

is restored to the Machine Sub-

Mode before the interrupt

occurred.

Page 44

5.8. Interrupt vector table

Such asFigure 5-6 Figure 5-6 As shown

in the figure, the interrupt vector

table refers to a continuous address

space opened in the memory, the

address
 Sett

ing

Each word of the space (Word) is used to

store the Interrupt Service Routine

corresponding to each interrupt source

of the ECLIC (Interrupt Service Routine,

Se

tting

Page 48

Isr) The pc address of the function.

The start address of the interrupt

vector table is specified by the CSR

register mtvt. The mtvt register can

usually be set to the beginning of

the entire code segment.

The role of the interrupt vector

table is very important. When the

processor responds to an interrupt

source, whether the interrupt is in

vector processing mode or non-vector

processing mode, the hardware will

eventually jump to the corresponding

. . .

.
. .

Page 48

Store one entry per
address

The specific pc

address points to the

corresponding

interrupt service

routine function The starting
position of the
code segment

Storage

Interrupt
vector
table

_start:
.
.
.

Interrupt vector table
subsequent address

start
Real boot program

Entrance

address 4095

Interrupt source 1

service program

function
Interrupt_1_handler () {

<interrupt service

program content>

}

Interrupt source 0

service program

function

Interrupt_0_handler () {

<interrupt service

program content>

}

address by querying the pc address

stored in the interrupt vector table.

In the interrupt service routine

function, see Section 5.13 for more

details.

Entry address 0

Entrance address

1

Entrance address

2

Figure 5-6 Schematic diagram of the interrupt vector table

Page 48

5.9. Context save and restore of incoming and outgoing interrupts

The risc-v architecture processor

does not have hardware to

automatically save and restore

context (general purpose registers)

operations when entering and exiting

the interrupt processing mode, so

software is required to explicitly

use (in assembly language)

instructions for context saving and

recovery.Depending on whether the

interrupt is in vector processing

mode or non-vector processing mode,

the content involved in context

Page 48

saving and recovery will vary, see

First 5.13 Learn more about the section.

5.10. Interrupt response delay

The concept of interrupt response

delay usually refers to the

instruction consumed from "external

interrupt source pull-up" to "the

first instruction in the Interrupt

Service Routine (ISR) that the

processor actually starts executing

the interrupt source". The number of

cycles.Therefore, the interrupt

response delay usually includes the

Page 48

periodic overhead of the following

aspects:

◼ The overhead of the processor core to jump after responding to the interrupt

◼ The cycle overhead spent by the processor core to save the context

◼ The overhead that the processor core jumps into the Interrupt Service Routine (ISR).

The interrupt response delay will vary

depending on whether the interrupt is

in vector processing mode or non-

vector processing mode, see section

5.13

Learn more about the section.

5.11. Interrupt nesting

While the processor core is

processing an interrupt, there may

be a new interrupt request of a

Page 48

higher level. The processor can

abort the current interrupt service

routine and start responding to the

new interrupt and execute its

"interrupt service routine". So, the

interrupt nesting is formed (that is,

the previous interrupt has not

responded yet, and the new interrupt

is started again), and the nested

hierarchy can have many layers.

TakeFigure 5-7 Figure 5-7 An example

of this is:
 Setting

Setting

◼ Assuming the processor is processing a timer interrupt and suddenly another button 1

interrupt is coming (level is higher than the timer interrupt), the processor will

pause processing the timer interrupt and begin processing the button 1 interrupt.

Page 48

◼ But suddenly another button 2 interrupt comes (level is higher than button 1 interrupt),

then the processor will pause

When the button 1 is interrupted,

the button 2 interrupt is processed.

◼ After that, no other higher-level interrupts will come, the button 2 interrupt

will not be interrupted, the processor can successfully complete the interrupt

of the button 2, and then return to the button 1 interrupt handler, complete the

button 1 interrupt Processing.

◼ After completing the processing of the button 1 interrupt, the processor will return to

the timer interrupt handler to complete the timer interrupt processing.

Page 48

The key 2

interrupt level is

the highest, and

the interrupt

service program

can be completely

executed.

The button 1

interrupt level is

higher than the timer

interrupt level, and

the timer interrupt

service routine is

immediately

interrupted to form

the first level

nesting.

Button 2 interrupt

level is higher than

the button

1 interrupt level,

button 1 interrupt

service routine is

immediately

interrupted,

forming a second

level of nesting

Continue to

execute the

current

highest

level

interrupt

service

routine

Continue to

execute the

current

highest

level

interrupt

service

routine

Figure 5-7 Schematic diagram of interrupt nesting

Note: Assuming that the new

interrupt request has a lower

priority (or the same) as the

interrupt level being processed, the

processor should not respond to this

new interrupt request. The processor

must complete the current interrupt

Continue to execute the

timer interrupt service

routine

(Level 1)

Execution timer

interrupt service

routine

(Level 1)

Continue to execute the

button 1 interrupt service

routine

(Level 2)

Execute button 1

interrupt service

routine

(Level 2)

Execution button 2

interrupt service

program

(level 3)

Page 48

service routine before considering

the new response. Interrupt request

(since the level of the new

interrupt request is not higher than

the interrupt level currently being

processed).See Section 6.2.9 for

more information on interrupt level

settings.

In the Bumblebee kernel, depending

on whether the interrupt is in

vector processing mode or non-vector

processing mode, the support method

for interrupt nesting will vary, see

Page 48

section 5.13 Learn more about the

section.

5.12. Interrupted biting

While the processor core is

processing an interrupt, a new

interrupt request may be coming, but

the "new interrupt level" is lower

than or equal to "the interrupt level

currently being processed", so the

new interrupt cannot interrupt the

current interrupt. Interrupt (so does

not form a nest).

After the processor completes the

Page 48

current interrupt, it is

theoretically necessary to restore

the context, then exit the interrupt

back to the main application, then

re-respond to the new interrupt, and

in response to the new interrupt, the

context needs to be saved

again.Therefore, there is a back-to-

back "recovery context" and "save

context" operation. If this back-to-

back "recovery context" and "save

context" are omitted, it is called

"medium".

Broken tail bite, such asFigure 5-8

Page 48

Figure 5-8 As shown, it is obvious that

interrupting the tail bite can speed up

the back-to-back processing speed of

multiple interruptions.
 Setting

Setting

Page 48

Recovery

site 2

Interrupt request 2
(Level is not higher than

interrupt request 1):

Interrupt request 1:

Normal interrupt processing

flow:

Interrupt processing flow

after using the tail biting

operation:

Inter

rupt

1

Inter

rupt

2

Continuous

recovery to the

previous site

and saving of

the next site

can be replaced

by a tail biting

operation

After using the tail

biting operation, a set of

operations to restore the

scene and save the scene

is reduced.It saves the

execution machine cycle

and greatly improves real-

time performance.

 After the execution of the last interrupt handler, it is immediately determined whether there is still
waiting
(Pending) interrupt.
 If there is a pending (Pending) interrupt, immediately respond to the interrupt and execute the interrupt
Corresponding interrupt handler.
 By biting the tail, it saves the processing time of one recovery and save site.

Figure 5-8 Schematic

diagram of interrupt

bite

In the Bumblebee kernel, interrupt

biting is only supported in non-vector

processing mode, see Section 5.13.1.3

for more details.

5.13. Interrupted vector processing mode and non-vector processing

mode

Recovery

site 1

Save the

scene 1

Recovery

site 1

Interrupt

handler 2

Bite

tail

Interrupt

handler 1

Save the

scene 1

Interrupt

handler 2

Save the

scene 2

Interrupt

handler 1

Page 48

As described in Section 6.2.2062.10,

each interrupt source of eclic can be

set to vector or non-vector processing

(by sending
 Sett

ing

The shv domain of the memory

clicintattr[i], the vector processing mode

and the non-vector processing mode have

large differences, respectively, as

follows.

5.13.1. Non-vector processing mode

5.13.1.1 Features and delays of non-vector processing modes

If configured as a non-vector

processing mode, the interrupt is

interrupted by the processor core and

the processor jumps directly into the

Page 48

entry address of all non-vector

interrupt shares. The entry address

can be set by software:

◼ If the least significant bit of the configuration CSR register mtvt2 is 0 (power-on

reset default), the entry address of all non-vector interrupt shares is specified by

the value of the CSR register mtvec (ignoring the value of the lowest 2 bits).Since the

value of the mtvec register also specifies the entry address of the exception, it means

that in this case, the exception and all non-vector interrupts share the entry point.

Page 49

site.

◼ If the least significant bit of the configuration CSR register mtvt2 is 1, then the

entry address shared by all non-vector interrupts is specified by the value of the CSR

register mtvt2 (ignoring the value of the lowest 2 bits).In order for the interrupt to

be responded and processed as fast as possible, it is recommended to set the least

significant bit of the CSR register mtvt2 to 1, ie, specify a separate entry address

for all non-vector interrupts by mtvt2, and the exception entry address (by The value

of mtvec is specified) completely separated.

After entering the entry address of

all non-vector interrupt shares, the

processor will begin executing a

common piece of software code, such

asFigure
5-9 Figure 5-9 In the example shown, the contents of this software code are usually as follows:

◼ First save the CSR registers mepc, mcause, msubm into the stack.These CSR registers are

saved to ensure that subsequent interrupt nesting is functional, because the new

interrupt response will overwrite the values of mepc, mcause, and msubm, so they need

to be saved to the stack first.

◼ Save several general-purpose registers (the context of the processor) onto the stack.

◼ Then execute a special instruction "csrrw ra, CSR_JALMNXTI, ra".If there is no

interruption waiting

(Pending), the instruction is

Page 49

equivalent to a Nop instruction

does nothing; if there is an

interrupt waiting (Pending),

after executing the instruction,

the processor will:

 The target address stored in the Vector Table Entry of the interrupt is

directly jumped into the Interrupt Service Routine (ISR) of the interrupt

source.

 While jumping into the interrupt service routine, the hardware also turns

on the global enable of the interrupt, that is, sets the MIE field of the

mstatus register to 1.After the interrupt global enable is enabled, the new

interrupt can be responded to achieve the effect of interrupt nesting.

 The "csrrw ra, CSR_JALMNXTI, ra" command also reaches JAL while jumping into the

interrupt service routine.

(Jump and Link) effect, the

hardware also updates the value

of the Link register as the

return address of the PC itself

of the instruction as a

Page 49

function call.Therefore, after

returning from the interrupt

service routine function, it

will return to the "csrrw ra,

CSR_JALMNXTI, ra" instruction

to re-execute, and re-determine

whether there is still an

interrupt waiting (Pending),

thereby achieving the effect of

interrupting the tail bite.

 At the end of the interrupt service routine, you also need to add the

corresponding recovery context pop operation.And before the CSR registers

mepc, mcause, msubm are out of the stack, the global enable of the interrupt

needs to be turned off again to ensure the mepc,

The atomicity of mcause, msubm
recovery operations (not
interrupted by new interrupts).

Page 51

}

Service program function
with interrupt source
(id=30)
Interrupt_30_handler () {

<Execute interrupt

service program

content>

}

Common_entry (interrupt public
entry address):

<save mepc into the stack>

<save mcause into the stack>

<save msubm into stack>

<Save general-purpose registers

into the stack as context>
csrrw ra, CSR_JALMNXTI, ra

<Recover general purpose

registers from the stack as

context>

<Reseat Interrupt Global Enable>

<restore msubm from stack>

<recover mcause from stack>

<Recover mec from stack]

<execute mret instruction>

.

.

.

.

.

.

The interrupt source (id=30) is
responded, and the hardware
automatically queries the csr to send

Save the value of mtvt2,

jump to mtvt2

Specified interrupt public

entry address

(Interrupt Common Entry Address)

Principal
application

main{
.
.
.
.
.
.

Figure 5-9 Example of interrupted non-vector processing mode (always nesting is

always supported)

Since the processor needs to

execute a common software code for

context preservation before jumping

to the interrupt service routine in

the non-vector processing mode, the

first instruction in the interrupt

Page 51

service routine is executed from the

interrupt source to the processor.

Need to experience the following

clock cycle overhead:

◼ The overhead of the processor core responding to a jump after an interrupt.Ideally about

4 clock cycles.

◼ The processor core saves the overhead of the CSR registers mepc, mcause, and msubm into the

stack.

◼ The periodic cost of the processor core saving the context.If it is the

architecture of rv32e, you need to save 8 general-purpose registers. If it is

the architecture of rv32i, you need to save 16 general-purpose registers.

◼ The overhead that the processor core jumps into the Interrupt Service Routine

(ISR).Ideally, it takes about 5 clock cycles.

Interrupt nesting in non-vector

processing mode

As mentioned above, non-vector

processing mode can always support

interrupt nesting, such asFigure 5-

Page 51

10 Figure 5-10 The example shown in

the example: Assume that the three

interrupt sources 30, 31, 32 come in

succession, and "level of interrupt

source 32" > "level of interrupt

source 31" > "level of interrupt

source 30", then later Interrupts

interrupt interrupts that were

previously processed to form

interrupt nesting.

Page 51

Principal application

Response interrupt: enter interrupt public entry address

<save context>

Enter the service program with interrupt id=30

<Part of the execution service program>

Nesting occurs: interrupt public entry address

<save context>

Enter the service program with interrupt id=31

<Part of the execution service program>

Nesting occurs: entering the interrupt public entry address

<save context>

Enter the service program with interrupt id=32

<Execution of the contents of the service program>

End interrupt service routine with interrupt id=32

Back to the interrupt public program

<recovery context>

Return to the service program with interrupt id=31

<Executing another part of the service program>

End interrupt service routine with interrupt id=31

Back to the interrupt public program

<recovery context>

Return to the service program with interrupt id=30

<Executing another part of the service program>

End interrupt service routine with interrupt id=30

Back to the interrupt public program

<recovery context>

Back to the main application

Page 51

Figure 5-10 Three successive (non-vector processing mode) interrupts form a nest

Page 51

5.13.1.3 Interrupt bite in non-vector processing mode

For non-vector processing mode

interrupts, the "interruption bite"

saves significant time (saving one

back-to-back save context) since the

processor has to save and restore the

context before jumping into and out

of the interrupt service routine. And

recovery context).

As mentioned above, in all common

code segments shared by non-vector

interrupts, the "csrrw ra,

CSR_JALMNXTI, ra" instruction also

...

Page 51

achieves the effect of JAL (Jump and

Link) while jumping into the interrupt

service routine, and the hardware is

updated simultaneously. The value of

the Link register is the return

address of the PC itself of the

instruction as a function

call.Therefore, after returning from

the interrupt service routine function,

it will return to the "csrrw ra,

CSR_JALMNXTI, ra" instruction to re-

execute, and re-determine whether

there is still an interrupt waiting

(Pending), thereby achieving the

Page 51

effect of interrupting the tail bite.

Such asFigure 5-11 Figure 5-11

Example shown in the following:

Assume that the three interrupt

sources 30, 29, and 28 come in

succession, and "level of interrupt

source 30" >= "level of interrupt

source 29" >= "level of interrupt

source 28", then Subsequent

interrupts will not interrupt the

interrupt that was being processed

before (no interrupt nesting will be

formed), but will be placed in the

Pending state.When the interrupt

Page 51

source 30 is completed

After processing, interrupt processing of

interrupt source 29 will be started

directly, eliminating the intermediate

"recovery context" and "save context"

procedures.

Figure 5-11 Schematic diagram of interrupt

bite

<recovery
context>

Enter the interrupt
service routine
(id=28)

Enter the interrupt
service routine
(id=29)

Omit one
recovery and
The process of
saving the
context

Interrupt public entry address

<save context>

Enter the interrupt

service routine

(id=30)

Principal
application

...

Page 51

5.13.2. Vector processing mode

5.13.2.1 The characteristics and delay of the vector processing mode

If configured as a vector

processing mode, after the interrupt

is responded by the processor core,

the processor directly jumps to the

target address stored in the Vector

Table Entry of the interrupt, that is,

the interrupt service routine of the

interrupt source (Interrupt Service)
Routine, ISR), such asFigure 5-12
Figure 5-12 The example shown in .

Page 51

}

.

.

.

.

.

.

The interrupt source (id=30)
is responded, hardware

automatically

Query the interrupt vector

table and jump directly

into

Corresponding interrupt
service routine

Principal
application

main{
.
.
.
.
.

.

Service program function

with interrupt source

(id=30)
Interrupt_30_handler () {

<Execute interrupt

service program content>

<execute mret

instruction>
}

Figure 5-12 Example of vector processing mode for interrupts

The vector processing mode has the

following characteristics:

◼ In the vector processing mode, the processor jumps directly to the interrupt

service routine and does not save the context. Therefore, the interrupt

response delay is very short, from the interrupt source to the first

instruction in the interrupt service routine. Basically, only hardware is

required to perform table lookup and jump time overhead, ideally about 6

clock cycles.

◼ For vector service mode interrupt service routine functions, special interrupt

((interrupt)) must be used to modify the interrupt service routine function.

Page 51

◼ In the vector processing mode, since the processor does not save the context

before jumping into the interrupt service routine, the interrupt service

routine function itself cannot theoretically call the subfunction (ie, must

be a Leaf Function).

 If the interrupt service routine function accidentally calls another

subfunction (not a Leaf Function), it will cause a function error if it is

not processed.In order to avoid this accidental error situation, as long

as a special

 Attribute ((interrupt)) to

modify the interrupt service

program function, then the

compiler will automatically

determine, when the compiler

finds that the function calls

other sub-functions, it will

automatically insert a piece of

code for context

preservation.Note: In this case,

Page 51

although the correctness of the

function is guaranteed, the

overhead caused by saving the

context will actually increase

the response delay of the

interrupt (equivalent to the

non-vector mode) and cause the

expansion of the code

size. .Therefore, in practice,

if the vector processing mode

is used, it is not recommended

to call other sub-functions in

the vector processing mode

interrupt service routine

Page 51

function.

◼ In the vector processing mode, the processor does not perform any special

processing before jumping into the interrupt service routine, and since the

processor core responds to the interrupt, the MIE field in the mstatus

register will be automatically updated by the hardware.

0 (meaning that the interrupt is

globally closed and cannot

respond to new

interrupts).Therefore, the

vector processing mode does not

support interrupt nesting by

default. In order to achieve the

vector processing mode and

interrupt the nesting effect,

such asFigure 5-13 Figure 5-13

As shown in the figure, you need

to add a special push operation

at the beginning of the interrupt

service routine:

 First save the CSR registers mepc, mcause, msubm into the stack.These CSR registers

Page 51

are saved to ensure that subsequent interrupt nesting functions correctly, because

the new interrupt response will overwrite mepc, mcause,

The value of msubm, so you need to

save them to the stack first.
 Re-enable the global enable of the interrupt, that is, set the MIE field of

the mstatus register to 1.After the interrupt global enable is enabled, the

new interrupt can be responded to achieve the effect of interrupt nesting.

 At the end of the interrupt service routine, you also need to add the

corresponding recovery context pop operation.And before the CSR registers

mepc, mcause, msubm are out of the stack, the global enable of the interrupt

needs to be turned off again to ensure the mepc,

The atomicity of mcause, msubm
recovery operations (not
interrupted by new interrupts).

Page 51

Figure 5-13 Example of vector processing mode for interrupts (support interrupt

nesting)

5.13.2.2 Vector processing mode interrupt nesting

As mentioned above, interrupts in

vector processing mode can also

support interrupt nesting after

special processing, such asFigure 5-

14 Figure 5-14 The example shown in

the example: Assume that the three

} }

<turn off mstaus.
MIE switch>

<restore msubm from

stack>

<recover mcause from

stack>

<Recover mec from

stack]

<execute mret

instruction>

.

.

.

.

.

.

<Execute the interrupt service
program for another part>

<Execute part of the
interrupt service program>

.

Higher level interrupts
are responded to, hardware

Automatically query the

interrupt vector table

and jump directly into

the corresponding

interrupt service

routine

Service program function
with interrupt source

(id=30)

Interrupt_30_handler () {

<save mepc into the

stack>

<save mcause into the

stack>

<save msubm into

stack>

<Open mstatus. MIE

switch>

The interrupt source (id=30)

is responded, hardware
automatically

Query the interrupt

vector table and jump

directly to the

corresponding interrupt

service routine

Principal
application

main{
.
.
.
.
.

.

Program re-open interrupt

global enable

(mstatus. MIE) and save some

important information onto the

stack to allow interrupt nesting

Service program function

for interrupt source

(id=31)

Interrupt_31_handler () {

<Execute interrupt

service program content>

<execute mret

instruction>

}

Page 51

interrupt sources 30, 31, 32 come in

succession, and "level of interrupt

source 32" > "level of interrupt

source 31" > "level of interrupt

source 30", then later Interrupts

interrupt interrupts that were

previously processed to form

interrupt nesting.

Page 51

Figure 5-14 Three successive (vector processing mode) interrupts form a nest

5.13.2.3 Vector processing mode interrupt bite

For the vector processing mode

interrupt, since the processor does

Principal application

Response interrupt: start interrupt service routine with interrupt

id=30

<save context>

<Part of the execution service program>

Nesting occurs: start interrupt handler with interrupt

id=31

<save context>

<Part of the execution

service program>

Nesting occurs: start interrupt handler

with interrupt id=32

<save context>

<Execution of the contents of the service

program>

<recovery context>

End interrupt service routine with

interrupt id=32

Return to interrupt service routine with interrupt id=31

<Executing another part of the service program>

<recovery context>

End interrupt service routine with interrupt id=31

Return to interrupt service routine with interrupt id=30

<Executing another part of the service program>

<recovery context>

End interrupt service routine with interrupt id=30

Back to the main application

Page 51

not save the context before jumping

into the interrupt service routine,

the meaning of "interrupt biting" is

not significant. Therefore, the

vector processing mode is interrupted

without "interruption". The ability

to bite the tail.

Page 51

6. Introduction to Bumblebee Core TIMER and ECLIC

6.1. Timer introduction

6.1.1. Introduction to timer

Timer Unit (TIMER), which is mainly

used to generate timer interrupts in

the Bumblebee kernel (Timer

Interrupt) and Software

Interrupt.See Sections 5.3.2.1 and

5.3.2.2 for details on timer

interrupts and software interrupts.

6.1.2. Timer register

Timer is a unit of memory address

mapping:

◼ The base address of the TIMER unit in the Bumblebee kernel is described in

the Bumblebee Kernel Concise Data Sheet.

◼ Timer unit address and address offsetTable 6-1 Table 6-1 Shown in .

Page 51

Table 6-1 Memory Map Addresses of the timer Register

Intra-module

offset address

Read and

write

properti

es

Register

name

Reset

default

Function

al

descript

ion

0x0 Readable

and

writable

mtime_lo 0x00000000 Reflects the lower 32-bit value of timer

mtime, see section 6.1.3

Learn more about it in detail.

0x4 Readable

and

writable

mtime_hi 0x00000000 Reflects the high 32-bit value of the timer

mtime, see section 6.1.3

Learn more about it in detail.

0x8 Readable

and

writable

mtimecmp_lo 0xFFFFFFFF Configure the timer comparison value

mtimecmp to be lower 32 bits, see

See section 6.1.5 Learn more about it in
detail.

0xC Readable

and

writable

mtimecmp_hi 0xFFFFFFFF Configure the timer comparison value

mtimecmp high 32 bits, see

See section 6.1.5 Learn more about it in
detail.

0xFF8 Readable

and

writable

mstop 0x00000000 Control the pause of the timer, see

section 6.1.4 Learn about it in detail

Detailed introduction.

0xFFC Readable

and

writable

msip 0x00000000 Generate software interrupts, see

section 6.1.6 Learn more about it

Shao.

note:

◼ TIMER's registers only support aligned read and write accesses with a size of (Size).

◼ The register range of TIMER is 0x00 ~ 0xFF, and the value in the address other than the one

listed in the above table is constant 0.

Page 59

The function and use of each register

are described in detail below.

6.1.3. Timing through the mtime register

The timer can be used for real time

timing. The main points are as follows:

◼ A 64-bit mtime register is implemented in TIMER, concatenated by {mtime_hi,

mtime_lo}, which reflects the value of the 64-bit timer.The timer increments

according to the low-speed input beat signal. The timer is turned on by

default, so it will always count.

◼ In the Bumblebee kernel, the self-incrementing frequency of

this counter is controlled by the processor's input signal

mtime_toggle_a, see the document Bumblebee Core Concise Data

Sheet for details on this input signal.

6.1.4. Pause timer through mstop register

Since the timer's timer is powered on,

it will continue to increment by

default, in order to turn off this

timer in some special cases.

Counting, an mstop register is

implemented in TIMER.Such asTable 6-2

Table 6-2 As shown, the mstop register

Page 59

has only the lowest bit. 设置

As a valid bit, this valid bit acts

directly as a timer's pause control

signal, so software can set the mstop

register
设

置

1 to pause the timer.

Table 6-2 Bit field of register mstop

doma

in

name

Bit Attribut

es

Reset value desc

ript

ion

Reserved 7:1 Read only,
write ignore

N/A Unused field, value is
constant 0

TIMESTOP 0 Readable and

writable

0 Control the timer to run or

pause.If the value of this

field is 1, the timer pauses

counting.

Otherwise normal auto

increment.

6.1.5. Generate timer interrupts via the mtime and mtimecmp registers

The timer can be used to generate a

timer interrupt, the main points are

as follows:

◼ A 64-bit mtimecmp register is implemented in TIMER, which is composed of

{mtimecmp_hi, mtimecmp_lo}. This register is used as a comparison value of

the timer, assuming that the value mtime of the timer is greater than or

Page 59

equal to

The value of mtimecmp generates

a timer interrupt.The software

can clear the timer interrupt by

overwriting the value of

mtimecmp or mtime (so that

mtimecmp is greater than the

value of mtime).

Page 60

Note: The timer interrupt is connected

to the eclic unit for unified

management. For details on eclic,

please refer to 6.26.2 设置

Section.

6.1.6. Generate software interrupts via msip register

TIMER can be used to generate

software interrupts.A msip register

is implemented in TIMER, such

asTable 6-3 Table 6-3 As shown in

the msip register, only the least

significant bit is a valid bit,

which is directly interrupted as a

software, so:

Page 60

◼ Software write generates a software interrupt by writing a 1 to the msip register;

◼ Software can clear the software interrupt by writing a 0 to the msip register.

Note: Software interrupts are

connected to the eclic unit for

unified management. For details on

eclic, see section 6.2 Section.

Table 6-3 Bit field of register msip

doma

in

name

Bit Attribut

es

Reset value desc

ript

ion

Reserved 7:1 Read only,
write ignore

N/A Unused field, value is
constant 0

MSIP 0 Readable and
writable

0 This field is used to generate
software interrupts

6.2. Eclic introduction

The Bumblebee kernel supports

"improved kernel interrupt controllers

optimized from the RISC-V standard

CLIC

(Enhanced Core Local Interrupt

Page 60

Controller, ECLIC)", used to

manage all interrupt sources.

Note:

◼ Eclic serves only one processor core and is private to the processor core.

◼ The software programming model of eclic is also backward compatible with the standard

clic.

Page 61

6.2.1. Introduction to eclic

Figure 6-1 eclic logical structure diagram

Eclic is used to arbitrate, send requests, and support interrupt nesting for multiple internal

and external interrupt sources.Eclic register

Such asTable 6-5 Table 6-5 Said logical structure such asFigure 6-1 Figure 6-1 As shown, the related
concepts are as follows: 设置

color,

◼ Eclic interrupt target 设置

color,

◼ Eclic interrupt source 设置
color,

◼ Eclic interrupt source number
设置

color,

◼ Eclic register

◼ Eclic interrupt source enable bit

◼ Eclic interrupt source wait flag

◼ Level or edge attribute of the eclic interrupt source

◼ Eclic interrupt source level and priority

Page 62

◼ Vector or non-vector processing of eclic interrupt sources

◼ Eclic interrupt target threshold level

◼ Arclic interrupt arbitration mechanism

◼ The response, nesting, and

tailing mechanisms of the eclic

interrupt are detailed below.

6.2.2. Eclic interrupt target

The eclic unit generates an interrupt

line and sends it to the processor

core (as the interrupt target). Its

relationship structure is as

follows:Figure 6-2 Figure 6-2 设置

Shown. 设置

Page 62

Figure 6-2 eclic relationship structure

diagram

Page 63

6.2.3. Eclic interrupt source

Such asFigure 6-2 Figure 6-2 As shown, ECLIC theoretically supports up to 4096 interrupt sources (Interrupt) from the programming model. 设置
color, Source).ECLIC defines the following characteristics and parameters for each interrupt source:

设置
color,

◼ Number (id)

◼ Enable bit (ie)

◼ Waiting flag bit (ip)

◼ Level or Edge-Triggered

◼ Level and Priority

◼ Vector or Non-Vector Mode is described below.

6.2.4. Eclic interrupt source number (id)

Eclic assigns a unique number (id)

to each interrupt source.For example,

if the hardware implementation of an

eclic really supports 4096 ids, the

id should be 0 to 4095.note:

◼ In the Bumblebee kernel, interrupts with interrupt ID numbers 0 through 18 are reserved as kernel-specific

internal interrupts.

◼ The interrupt source id assigned to the normal external interrupt starts at 19 and can

Page 63

be used by the user to connect to an external interrupt source.

Detailed introductionTable 6-4 Table

6-4 Shown in . 设置

设置

Table 6-4 eclic interrupt source number and assignment

Eclic interrupt

number

Feat

ures

Interrupt

source

introducti

on

0 Reserved The interrupt is not used by the Bumblebee
kernel.

1 Reserved The interrupt is not used by the Bumblebee
kernel.

2 Reserved The interrupt is not used by the Bumblebee
kernel.

3 Software interruption A software interrupt generated by the TIMER
unit of the Bumblebee kernel.

4 Reserved The interrupt is not used by the Bumblebee
kernel.

5 Reserved The interrupt is not used by the Bumblebee
kernel.

6 Reserved The interrupt is not used by the Bumblebee
kernel.

7
Timer interrupt The timer generated by the TIMER unit of the

Bumblebee kernel

Broken.

8 Reserved The interrupt is not used by the Bumblebee
kernel.

Page 64

9 Reserved The interrupt is not used by the Bumblebee
kernel.

10 Reserved The interrupt is not used by the Bumblebee
kernel.

11 Reserved The interrupt is not used by the Bumblebee
kernel.

12 Reserved The interrupt is not used by the Bumblebee
kernel.

13 Reserved The interrupt is not used by the Bumblebee
kernel.

14 Reserved The interrupt is not used by the Bumblebee
kernel.

15 Reserved The interrupt is not used by the Bumblebee
kernel.

16 Reserved The interrupt is not used by the Bumblebee
kernel.

17
Memory access error

interrupt

Bumblebee kernel memory access error turned

into internal

Interrupted.

18 Reserved The interrupt is not used by the Bumblebee
kernel.

19 ~ 4095

External Interrupt Normal external interrupts are available for

user connections.note:

◼ Although ECLIC supports up to 4096 interrupt

sources from the programming model, the actual

number of interrupt sources supported by the

hardware is reflected in the information

register clicinfo.NUM_INTERRUPT.

6.2.5. Eclic register

Eclic is a unit of memory address

mapping:

◼ The base address of the ECLIC unit in the Bumblebee kernel is described in

the Bumblebee Kernel Concise Data Sheet.

◼ Register and address offsets in the eclic unitTable 6-5 Table 6-5 Shown in . 设置
color,

设置
color,

Table 6-5 Intra-cell address offset of the eclic register

Attr

ibut

name width

Page 64

es

0x0000 Readable and
writable

cliccfg 8
digit

s

0x0004 Read only, write
ignore

clicinfo 32
bit

0x000b Readable and
writable

mth 8
digit

s

0x1000+4*i Readable and
writable

clicintip[i

]

8
digit

s

0x1001+4*i Readable and
writable

clicintie[i

]

8
digit

s

0x1002+4*i Readable and
writable

clicintattr
[i]

8
digit

s

0x1003+4*i Readable and
writable

clicintctl[

i]

8
digit

s

note:

◼ The above i represents the ID number of the interrupt,
and the register with the [i] suffix indicates that there
is a separate register for each interrupt source.

◼ ECLIC's registers support aligned read and write
accesses of byte, half-word, or word.

◼ Writes to the above "read only" registers are
ignored, but no bus error exceptions are
generated.

Page 65

The individual registers are described

in detail below.

6.2.5.1 Register cliccfg

The cliccfg register is a global

configuration register. Software can

rewrite this register to configure

several global parameters. For

details on the specific bit field,

seeTable 6-6 Table 6-6 Shown in .

Table 6-6 Bit field of register cliccfg

doma

in

name

Bit Attribut

es

Reset

value

desc

ript

ion

Reserved 7:5 Read only,
write ignore

N/A Unused field, value is constant 0

nlbits 4:1 Readable and

writable

0 Bit used to specify the Level field in the

clicintctl[i] register

◼ The actual eclic may not be configured with 4096
interrupt sources, so the value of the corresponding
register of the non-existing interrupt source is constant
0.

◼ The register range in the ECLIC unit is 0x0000 ~
0xFFFF, and the value in the address other than
the one listed in the above table is constant 0.

Page 65

Number, see section 6.2.9 Learn more about
it in detail.

Reserved 0 Read only,
write ignore

N/A Unused field, value is constant 1

6.2.5.2 Register clicinfo

The clicinfo register is a global

information register that software can

read to view several global parameters.

For details on the bit field, seeTable

6-7 Table 6-7 Shown in . 设置

设置

Table 6-7 Bit field of register clicinfo

doma

in

name

Bit Attributes Reset

value

desc

ript

ion

Reserved 31:25 Read only,
write ignore

N/A Unused field, value is
constant 0

CLICINTCTLBITS 24:21 Read only,

write ignore

N/A The number of bits used to

specify the valid bits in

the clicintctl[i] register,

see section 6.2.9

Learn more about it in
detail.

VERSION 20:13 Read only,
write ignore

N/A Hardware implementation
version number

NUM_INTERRUPT 12:0 Read only,
write ignore

N/A Number of interrupt sources
supported by hardware

6.2.5.1 Register mth

The mth register is the threshold

level register of the interrupt

Page 65

target. Software can rewrite the

register to configure the threshold

level of the interrupt target. For

details of the specific bit field,

seeTable 6-8 Table 6-8 Shown in .

Page 66

Table 6-8 Bit field of register mth

doma

in

name

Bit Attribut

es

Reset

value

desc

ript

ion

mth 7:0 Readable and

writable

N/A Threshold level register

for interrupt target, see

section 6.2.11 Learn more

about it

Shao.

6.2.5.2 Register clicintip[i]

The clicintip[i] register is the wait

flag register of the interrupt source.

For details of the specific bit field,

seeTable 6-9 Table 6-9 Central 设置

示。 设置

Table 6-9 Bit field of register clicintip[i]

doma

in

name

Bit Attribut

es

Reset

value

desc

ript

ion

Reserved 7:1 Read only,
write ignore

N/A Unused field, value is
constant 0

IP 0 Readable and

writable

0 Waiting flag bit of the

interrupt source, see

section

6.2.7 Learn more about it
in detail.

6.2.5.3 Register clicintie[i]

The clicintie[i] register is the

enable register of the interrupt

Page 66

source. For details of the specific

bit field, seeTable 6-10 Table 6-10

Shown in . 设置

设置

Table 6-10 Bit field of register clicintip[i]

doma

in

name

Bit Attribut

es

Reset

value

desc

ript

ion

Reserved 7:1 Read only,
write ignore

N/A Unused field, value is
constant 0

IE 0 Readable and

writable

0 The enable bit of the

interrupt source, see

section

6.2.6 Learn more about it
in detail.

6.2.5.4 Register clicintattr[i]

The clicintattr[i] register is the

attribute register of the interrupt

source. Software can rewrite several

registers of the interrupt source by

rewriting this register.

Sex, see the specific bit field

information.Table 6-11 Table 6-11 Shown

in . 设置

设置

Page 66

Table 6-11 Bit fields of the register clicintattr[i]

doma

in

name

Bit Attribut

es

Reset value desc

ript

ion

Page 67

Reserved 7:6 Read only,

write ignore

N/A Unused field, value is

constant 3
Reserved 5:3 Read only,

write ignore

N/A Unused field, value is

constant 0
trig 2:1 Readable and

writable

0 Specify the level or edge

attribute of the interrupt

source,

See section 6.2.8 Learn more
about it in detail.

shv 0 Readable and

writable

0 Specify whether the

interrupt source uses

vector processing mode or

non-vector processing mode,

see section

6.2.10 Learn more about it in
detail.

6.2.5.5 Register clicintctl[i]

The clicintctl[i] register is the

control register for the interrupt

source. Software can override this

register to configure the level of the

interrupt source.

(Level) and Priority (Priority), the

Level and Priority fields are

dynamically allocated according to the

value of cliccfg.nlbits, see section

6.2.9 Learn more about it in detail.

6.2.6. Eclic interrupt source enable bit (ie)

Page 67

Such asFigure 6-2 Figure 6-2 As shown,

eclic assigns an interrupt enable bit

(ie) to each interrupt source,

reflected in the register. 设置

In clicintie[i].IE, its functions are as

follows:
设

置

◼ The clicintie[i] register of each interrupt source is a readable and writable

register of the memory address map so that software can program it.

◼ If the clicintie[i] register is programmed to 0, it means that this interrupt source is masked.

◼ If the clicintie[i] register is programmed to be 1, it means that this interrupt source is turned on.

6.2.7. Eclic interrupt source wait flag (ip)

Such asFigure 6-2 Figure 6-2 As shown,

eclic assigns an interrupt wait flag

(ip) to each interrupt source,

reflected in the registration. 设置

In clicintip[i].IP, its function is as

follows:
设

Page 67

置

◼ If the ip bit of an interrupt source is high, it indicates that the interrupt

source is triggered.The trigger condition of the interrupt source depends on

whether it is a level-triggered or edge-triggered attribute, see section 6.2.8

Detailed introduction of the section.

◼ The ip bit software of the interrupt source is readable and writable. The behavior

of the software to write the ip bit depends on whether it is a level-triggered or

edge-triggered attribute. 6.2.8 Detailed introduction of the section.

◼ For edge-triggered interrupt sources, their ip may also have hardware self-

clearing behavior, see section 6.2.8 Detailed introduction of the section.

Page 68

6.2.8. Level or Edge-Triggered of the ECLIC interrupt source

Such asFigure 6-2 Figure 6-2 As shown,

each interrupt source of eclic can be

set to level trigger or edge triggered

attributes (through 设置

The trig field of the register

clicintattr[i], the main points are as

follows:
设

置

◼ When clicintattr[i].trig[0] == 0, set the interrupt attribute to a level-triggered interrupt:

 If the interrupt source is configured for level triggering, the ip bit of the

interrupt source will reflect the level of the interrupt source in real time.

 If the interrupt source is configured as a level trigger, since the ip bit of

the interrupt source reflects the level value of the interrupt source in real

time, the software write operation of the interrupt ip bit is ignored, that is,

the software cannot be set by the write operation or Clear the value of the ip

bit.If the software needs to clear the interrupt, it can only be done by

clearing the final source of the interrupt.

◼ When clicintattr[i].trig[0] == 1 and clicintattr[i].trig[1] == 0, set the interrupt attribute to a

rising edge triggered interrupt:

 If the interrupt source is configured as a rising edge trigger, when eclic

detects the rising edge of the interrupt source, the interrupt source is

triggered in eclic, and the ip bit of the interrupt source is set high.

 If the interrupt source is configured for a rising edge trigger, software

Page 68

writes to the interrupt ip bit, that is, the software can set or clear the

value of the ip bit by a write operation.

 Note: For the rising edge triggered interrupt, in order to improve the efficiency of

interrupt processing, when the interrupt is responded and the processor core jumps

into the Interrupt Service Routines (ISR), the ECLIC hardware will automatically clear

the interrupt. The interrupted IP bit eliminates the need to software clear the IP bit

of the interrupt within the ISR.

◼ When clicintattr[i].trig[0] == 1 and clicintattr[i].trig[1] == 1, set the interrupt attribute to the

interrupt triggered by the falling edge:

 If the interrupt source is configured as a falling edge trigger, when eclic

detects the falling edge of the interrupt source, the interrupt source is

triggered in eclic and the ip bit of the interrupt source is set high.

 If the interrupt source is configured as a falling edge trigger, the software

write to the interrupt ip bit will take effect, ie, the software can set or

clear the value of the ip bit by a write operation.

 Note: For the interrupt triggered by the falling edge, in order to improve the

efficiency of the interrupt processing, when the interrupt is responded and the

processor core jumps into the Interrupt Service Routines (ISR), the ECLIC hardware

will automatically clear the interrupt. The interrupted IP bit eliminates the need to

software clear the IP bit of the interrupt within the ISR.

6.2.9. ECLIC interrupt source level and priority (Level and Priority)

设置

Such asFigure 6-2 Figure 6-2 As shown,
each interrupt source of eclic can be
set to a specific level and priority
(via register 设置

Page 70

Clicintctl[i]), the main points are as

follows:

◼ The clicintctl[i] register of each interrupt source is theoretically 8 bits wide, and the

real number of bits that the hardware actually implements is

The clicinfoCTLBITS field of the

clicinfo register is

specified.For example, if the

value of the

clicinfo.CLICINTCTLBITS field is

6, it means that only the upper

6 bits of the clicintctl[i]

register are true valid bits,

and the lowest 2 bits are

constant 1, such asFigure 6-3

Figure 6-3 The example in the

example.

 Note: The value of the clicintctlbits field is a read-only fixed constant

that cannot be overwritten by software.The theoretically reasonable range

is 2 <= clicintctlbits <= 8. The actual actual value is determined by the

hardware implementation of the processor core.

Page 70

◼ In the valid bit of the clicintctl[i] register, there are two dynamic fields, which are used to specify the level

of the interrupt source.

(Level) and Priority

(Priority).The width of the

Level field is specified by the

nlbits field of the cliccfg

register.For example, if the

value of the cliccfg.nlbits

field is 4, it means that the

upper 4 bits of the valid bit of

the clicintctl[i] register are

the Level field, and the other

lower significant bits are the

Priority field, such asFigure 6-

3 Figure 6-3 The example in the

example.

 Note: The value of the cliccfg.nlbits field is a readable and writable field that

can be programmed by the software.

Page 70

Figure 6-3 Example format of the register clicintctl[i]

◼ The main points related to the level of the interrupt source are as follows:

 The digital values of Level are interpreted in a left-aligned manner, and

the low bits except the effective bit width (specified by cliccfg.nlbits)

are all filled with a constant constant of 1, such asFigure 6-4 Figure 6-

4 The example in the example.

◆ Note: If cliccfg.nlbits > clicinfo.CLICINTCTLBITS, it means that the number

of bits indicated by nlbits exceeds the valid bit of the clicintctl[i]

register, and the excess bits are all filled with the complement constant 1.

◆ Note: If cliccfg.nlbits = 0, the numeric value of Level will be considered a

fixed 255.Such asFigure 6-5 Figure 6-5 The example in the example.

 The higher the numeric value of Level, the higher its level. Note:

Page 70

◆ High-level interrupts can interrupt low-level interrupt processing, resulting

in interrupt nesting, see Section 5.11

Detailed introduction of the

section.
◆ Multiple interrupts are waiting at the same time (IP bit is high).

ECLIC needs to arbitrate to determine which interrupt is sent to the

kernel for processing. The arbitration needs to refer to the Level

value of each interrupt source.See the detailed description in Section

5.5.

Figure 6-4 How to interpret the digital value

of Level

Figure 6-5 Several examples of cliccfg settings

Page 70

◼ The main points related to the priority of the interrupt source are as follows:

 The digital value of Priority is also interpreted in a left-aligned manner,

effective bit width

The lower bits except

(clicinfo.CLICINTCTLBITS -

cliccfg.nlbits) are all filled

with the complement constant 1.
 The higher the numeric value of Priority, the higher its priority. Note:

Page 71

◆ The priority of the interrupt does not participate in the judgment of

interrupt nesting, that is, whether the interrupt can be nested and

interrupted.

The value of (Priority) does not

matter, but is related to the

value of the level of the

interrupt level.
◆ When multiple interrupts are simultaneously Pending, ECLIC needs to

arbitrate to determine which interrupt is sent to the core for processing.

The arbitration needs to refer to the Priority digital value of each

interrupt source.See section 6.2.12 Detailed introduction of the section.

6.2.10. Vector or Non-Vector Mode of ECLIC Interrupt Sources

Each interrupt source of ECLIC can

be set to vector or non-vector

processing (via the shv field of the

register clicintattr[i]). The main

points are as follows:

◼ If configured as a vector processing mode, after the interrupt is responded

by the processor core, the processor jumps directly into the target address

stored in the vector table entry of the interrupt.For a detailed description

of the interrupt vector processing mode, see Section 5.13.

◼ If configured to be a non-vector processing mode, then after the interrupt

is responded by the processor core, the processor jumps directly into the

entry address of all interrupt shares.For a detailed description of the

interrupt non-vector processing mode, see Section 5.13.

Page 71

6.2.11. Eclic interrupt target threshold level

Such asFigure 6-1 Figure 6-1 As shown in the figure, ECLIC can set the threshold level (mth) of a specific interrupt target, the main points are as follows: 设置
color,

◼ The mth register is a complete 8-bit register, all bits are readable and writable,
software can write this register configuration 设置

Target threshold.Note: This
threshold characterizes a level
value.
 col

or,

◼ The "level value" of the interrupt that ECLIC finally arbitrates is only

higher than the value in the "mth register", and the interrupt can be sent

to the processor core.

6.2.12. Arclic interrupt arbitration mechanism

Such asFigure 6-2 Figure 6-2 As shown, the principle that eclic arbitrates all of its interrupt sources is as follows: 设置
color,

◼ Only sources of interruption that meet all of the following conditions can
participate in arbitration: 设置

color,

 The enable bit of the interrupt source (clicintie[i] register) must be 1.

 The wait flag bit (clicintip[i] register) of the interrupt source must be 1.

◼ The rules for arbitration from all sources of interruption involved in arbitration

are:

Page 72

 First, determine the level (Level), the larger the level value of the interrupt

source, the higher the arbitration priority.

 If the Levels are equal, then the Priority is determined. The larger the Priority number,

the higher the arbitration priority.

 If both Level and Priority are equal, the judgment interrupt ID is judged again, and the

interrupt source with the larger interrupt ID has higher arbitration priority.

◼ If the level value of the interrupt source that was last arbitrated is higher

than the threshold level (mth) of the interrupt target, a final interrupt

request is generated, pulling the interrupt request signal to the processor

core high.

6.2.13. Eclic interrupt response, nesting, tail biting mechanism

After the eclic interrupt request

is sent to the processor core, the

processor core will respond to

it.Through eclic and kernel

collaboration, you can support

interrupt nesting, fast tail biting

and other mechanisms.See Section 5.6,

Section 5.11, Section 5.12 for

Page 72

details.

Page 73

7. Bumblebee kernel CSR register introduction

7.1. Bumblebee Core CSR Register Overview

Some control and status registers

(CSRs) are defined in the RISC-V

architecture to configure or log the

status of some operations.The CSR

register is a register internal to

the processor core and uses its

proprietary 12-bit address encoding

space.

7.2. Bumblebee kernel CSR register list

A list of CSR registers supported by

the Bumblebee kernel, such asTable 7-1

Table 7-1 As shown, including the

crisr of the risc-v standard 设置

Page 73

Register (RV32IMAC architecture supports

Machine Mode and User Mode related) and

Bumblebee kernel custom expansion
设

置

The csr register of the show.

Table 7-1 List of CSR Registers Supported by the Bumblebee Kernel

Type

s of

Csr

address

Read and

write

propertie

s

name

Full

name

Risc-v standard

csr

（Machine

Mode）

0xF11 MRO mvendorid Commercial Supplier Number Register

(Machine

Vendor ID Register）

0xF12 MRO marchid Architecture Number Register

(Machine Architecture

ID Register）

0xF13 MRO mimpid Hardware Implementation Number

Register (Machine
Implementation ID Register）

0xF14 MRO mhartid Hart number register (Hart ID

Register)

0x300 MRW mstatus Exception handling status register

0x301 MRO misa Instruction Set Architecture

Register (Machine ISA)
Register）

0x304 MRW mie Local interrupt mask control

register (Machine
Interrupt Enable Register）

0x305 MRW mtvec Exception entry base address

register

0x307 MRW mtvt The base address of the eclic

interrupt vector table

0x340 MRW mscratch Temporary register (Machine Scratch

Register)

0x341 MRW mepc Machine Exception Program Counter

0x342 MRW mcause Abnormal Cause Register (Machine

Cause

Register）

0x343 MRW mtval Outlier register (Machine Trap

Value)
Register）

Page 74

设置

设置

设置

设置

设置

设置

 0x344 MRW mip Interrupt wait register (Machine

Interrupt)

Pending Register）

Ox345 MRW mnxti Standard registers are used to

enable interrupts, processing the

next one

Break and return the handler entry

address of the next interrupt

0x346 MRO mintstatus Standard register is used to save

the current interrupt level

0x348 MRW mscratchcsw Standard registers are used to

exchange when privileged mode

changes

Mscratch and destination register
values

0x349 MRW mscratchcswl Standard registers are used to

exchange when the interrupt level

changes

Mscratch and destination register
values

0xB00 MRW mcycle Lower 32 bits of Cycle counter

0xB80 MRW mcycleh The upper 32 bits of the cycle

counter (Upper 32 bits of
Cycle counter）

0xB02 MRW minstret Complete the lower 32 bits of the

instruction counter (Lower 32

bits of Instructions-retired
counter）

0xB82 MRW minstreth Complete the 32 bits of

Instructions-retired counter

Risc-v standard

csr

（User Mode）

0xC00 URO cycle Read-only copy of the mcycle

register

Note: Whether this register is

readable in User Mode is controlled

by the CY bit field of the CSR

register mcounteren, see section

7.4.297.4.29 Understanding

Details.

0xC01 URO time Read-only copy of the mtime register

Note: Is this register readable by

the TMR register mcounteren in User

Mode?
Special domain to control, see
section 7.4.297.4.29 Festival
Explain its
details.

0xC02 URO instret Read-only copy of the minstret

register

Note: Whether this register is

readable in User Mode is controlled

by the IR bit field of the CSR

register mcounteren, see section

7.4.297.4.29 Understanding

Details.

0xC80 URO cycleh Read-only copy of the mcycleh

register

Note: Is this register readable by

the CY bit of the CSR register

mcounteren in User Mode?
Domain to control, see section
7.4.297.4.29 Understanding
Details.

Page 78

 0x7d0 MRW mmisc_ctl Custom registers are used to control

the handler of nmi
Entry address

0x7d6 MRW msavestatus Custom registers are used to hold

mstatus values

0x7d7 MRW msaveepc1 Custom registers are used to save

the first level nested nmi
Or abnormal mepc

0x7d8 MRW msavecause1 Custom registers are used to save

the first level nested nmi

Or unusual mcause

0x7d9 MRW msaveepc2 Custom registers are used to hold

the second level nested nmi

Or abnormal mepc

0x7da MRW msavecause2 Custom registers are used to hold

the second level nested nmi

Or unusual mcause

0x7eb MRW pushmsubm Custom registers are used to store

the value of msubm in the heap

Stack address space

0x7ec MRW mtvt2 Custom registers are used to set

non-vector interrupt handling

Mode interrupt entry address

0x7ed MRW jalmnxti The custom register is used to enable

the ECLIC interrupt. The read

operation of this register can

process the next interrupt and return

the entry address of the next

interrupt handler.
Jump to this address.

0x7ee MRW pushmcause Custom registers are used to store

the value of mcause in the stack

address space

0x7ef MRW pushmepc Custom registers are used to store

the value of mepc on the stack
Address space

0x811 MRW sleepvalue Wfi sleep mode register

0x812 MRW txevt Send Event Register

0x810 MRW wfe Wait for Event Control Register

note:

◼ MRW means Machine Mode Readable/Writeable

◼ MRO stands for Machine Mode Read-Only

◼ URW means User Mode Readable/Writeable

◼ URO stands for User Mode Read-Only

7.3. Access to the Bumblebee kernel's CSR register

Page 78

The Bumblebee kernel has access to the

CSR registers as follows:

◼ Whether in Machine Mode or User Mode:

 If you read or write to a non-existing CSR register address range, an Illegal

Instruction is generated.

Exce

ptio

n.

◼ In Machine Mode:

 Reading and writing to the csr register of the mrw or urw attribute is fine.

Page 78

 Reading the csr register of the mro or uro attribute is fine.

 If you write to the CSR register of the MRO or URO attribute, an Illegal Instruction is

generated.

Exception.

◼ In User Mode:

 Reading and writing the csr register of the urw attribute is fine.

 Reading the csr register of the uro attribute is fine.

◆ Note: For the cycle, cycleh, time, timeh, instret, and intreth registers of the

URO attribute, its readability is also controlled by the relevant bit field of

mcounteren, see 7.4.29 Learn more about it.

 If you write to the CSR register of the URO attribute, an Illegal

Instruction Exception is generated.

 If you read or write to the CSR register of the MRW or MRO attribute, an

Illegal Instruction Exception is generated.

7.4. RISC-V standard CSR supported by the Bumblebee kernel

This section describes the Bumblebee

kernel-defined CSR registers (the

RV32IMAC architecture supports

Machine Mode and User).

Mode related).

Page 78

7.4.1. misa

The misa register is used to indicate

the architectural characteristics

supported by the current processor.

The highest two bits of the misa

register are used to indicate the

number of architecture bits supported

by the current processor:

◼ If the highest two-bit value is 1, it means that it is currently a 32-bit architecture

(rv32).

◼ If the highest two-bit value is 2, it means that the current 64-bit architecture (rv64).

◼ If the highest two-bit value is 3, it means that the current 128-bit architecture (rv128).

The lower 26 bits of the misa register

are used to indicate a subset of

different modular instructions in the

RISC-V ISA supported by the current

processor, each

Page 78

A representation of a modular

instruction set such asFigure 7-1

Figure 7-1 Shown in .The other unused

bit fields of this register are

constant 0.
Figure 7-1 A subset of the modular instructions represented by the lower 26 bits of

the misa register

Page 78

Note: The misa register is defined

as a readable and writable register

in the RISC-V architecture document,

allowing some processors to be

designed to dynamically configure

certain features.However, in the

implementation of the Bumblebee

kernel, the misa register is a read-

only register that constantly

reflects the ISA modular subset

supported by different processor

cores.

7.4.2. mie

Page 78

The control bit of the mie register in

ECLIC interrupt mode does not work,

and reads mie returns all 0s.

7.4.3. mvendorid

Page 78

This register is a read-only

register that reflects the

commercial vendor number

(Vendor ID) of the processor

core.If the value of this

register is 0, this register

is not implemented.

7.4.4. marchid

This register is a read-only

Page 78

register that reflects the hardware

implementation microarchitecture ID

of the processor core.If the value

of this register is 0, this register

is not implemented.

7.4.5. mimpid

This register is a read-only

register that reflects the

hardware implementation number

(Implementation ID) of the

Page 78

processor core.If the value of

this register is 0, this

register is not implemented.

7.4.6. mhartid

This register is a read-only register

that reflects the current Hart number

(Hart ID).

Hart (meaning "Hardware Thread")

means a hardware thread. Multiple

hardware threads may be implemented

in a single processor core, such as

hardware hyper-threading technology.

Page 78

Each set of threads has its own

independent register group and other

context resources. However, most of

the computing resources are

multiplexed by all hardware threads,

so the area efficiency is high.In

such a hardware hyper-threading

processor, there are multiple

hardware threads (Hart) in one core.

The Hart number value in the

Bumblebee kernel is controlled by

the input signal core_mhartid.Note:

The RISC-V architecture stipulates

that if there is at least one Hart

Page 78

number in the single Hart or multi-

Hart system, it must be 0.

7.4.7. mstatus

The mstatus register is the status

register in Machine Mode.Each

control bit field in the mstatus

registerTable 7-2 Table 7-2 Shown.

Page 79

Table 7-2 Control bits of the mstatus register

设置

Sett

ing

sett

ings

设置

7.4.8. MIE domain of mstatus

The MIE field in the mstatus register

indicates global interrupt enable:

When the value of the mie

field is 1, it indicates that

the global switch of the

interrupt is open, and the

area

Bit

Reset

value

desc

ript

ion

Reserved 2:0 N/A Unused field is constant 0

MIE 3 0 See section 7.4.8 Festival to learn more about it

Reserved 6:4 N/A Unused field is constant 0

MPIE 7 0 See section 7.4.97.4.9 Festival to learn more about
it

 Reserved 10:8 N/A Unused field is constant 0

MPP 12:11 0 See section 7.4.97.4.9 Festival to learn more about
it

FS 14:13 0 See section 7.4.107.4.10 Festival to learn more

about it

 XS 16:15 0 See section 7.4.117.4.11 Festival to learn more
about it

Reserved 17 N/A Unused domain, value is irrelevant

Reserved 30:18 N/A Unused field is constant 0

SD 31 0 See section 7.4.127.4.12 Festival to learn more

about it

Page 79

interrupt can be responded

normally. When the value of

the mie field is 0, it

indicates that the interrupt

is globally closed, the

interrupt is masked, and the

response cannot be responded.

Note: When the Bumblebee core

enters an exception, interrupt, or

NMI processing mode, the value of

the MIE is updated to 0 (meaning

Page 79

that the interrupt is masked after

entering an exception, interrupt, or

NMI processing mode).

7.4.9. MPIE and MPP domains for mstatus

The MPIE and MPP fields in the mstatus

register are used to automatically

save entry exceptions, before NMI and

interrupts.

Automatic recovery when mstatus.MIE and

privileged mode (Privilege Mode).

Update the hardware behavior of the

mstatus registers MPIE and MPP fields

when the Bumblebee kernel enters an

exception, see 3.4.5

Learn more about it.

When the Bumblebee kernel exits the

Page 79

exception (execute the mret

instruction in exception handling

mode), the mstatus register MPIE is

updated.

Page 90

For hardware behavior of the mpp domain,

see Section 3.5.2 for details.

Update the hardware behavior of the

mstatus registers MPIE and MPP fields

when the Bumblebee kernel enters the

NMI, see 4.3.4

Learn more about it.

When the Bumblebee kernel exits the

NMI (execute the mret instruction in

exception handling mode), the mstatus

register MPIE is updated.

For hardware behavior of the mpp domain,

see Section 4.4.2 for details.

Update the hardware behavior of the

mstatus register MPIE and MPP fields

when the Bumblebee kernel enters the

Page 90

interrupt, see 5.6.5

Learn more about it.

When the Bumblebee kernel exits the

interrupt (execute the mret

instruction in exception handling

mode), the mstatus register MPIE is

updated.

For hardware behavior of the mpp domain,

see Section 5.7.2 for details.

Note: The values of the

mstatus.MPIE and mstatus.MPP fields

are mirrored with the values of the

mcause.MPIE and mcause.MPP fields,

ie, under normal circumstances, the

value of the mstatus.MPIE field and

Page 90

the value of the mcause.MPIE field

are always Is exactly the same,
The value of the mstatus.MPP field is
always exactly the same as the value of
the mcause.MPP field.

7.4.10. FS domain of mstatus

The FS field in the mstatus register

is used to maintain or reflect the

state of the floating point unit.

Note: This field will only exist if a

floating point instruction (a subset

of "f" or "d" instructions) is

configured.

The fs field consists of two bits, and

its encoding is shown in the following

figure.

Page 90

Figure 7-2 Status code represented by the fs

field

The update criteria for the fs domain

are as follows:

Page 90

◼ The default value of FS after power-on is 0, which means that the state of

the floating-point unit is Off.Therefore, in order to use the floating point

unit normally, the software needs to use the CSR write instruction to rewrite

the value of FS to a non-zero value to turn on the function of the floating

point unit (FPU).

◼ If the value of FS is 1 or 2, the value of FS is automatically switched to 3 after any

floating-point instructions are executed, indicating that the state of the floating-point

unit is Dirty (the state has changed).

◼ If the processor does not want to use a floating-point unit (such as powering

down the floating-point unit to save power), you can use the CSR write

instruction to set the FS field of the mstatus register to 0 to turn off the

function of the floating-point unit.Any operation that accesses the floating-

point CSR register or any behavior that performs a floating-point instruction

will cause an Illegal Instruction exception after the function of the

floating-point unit is turned off.

In addition to the above functions,

the value of the fs field is also

used for the guidance information of

the operating system when performing

context switching. For interested

users, please refer to the original

Page 90

risc-v "privileged architecture

document version 1.10".

7.4.11. XS domain of mstatus

The XS field in the mstatus

register is similar to the FS field,

but it is used to maintain or

reflect user-defined extended

instruction unit status.

The XS field is defined as a read-

only field in the standard RISC-V

"privileged architecture document

version 1.10", which is used to

reflect the state sum of all custom

Page 90

extended instruction units.Note,

however, that in the hardware

implementation of the Bumblebee

kernel, the XS domain is designed to

be a writable readable domain, which

acts like a FS domain. Software can

override the value of the XS field to

turn the coprocessor extension

instruction unit on or off. purpose.

Similar to the fs domain, in addition

to the above functions, xs is used for

guidance information when the operating

system performs context switching. For

interested users, please refer to the

Page 90

risc-v "privileged architecture document

version 1.10" original text.

7.4.12. SD domain of mstatus

The SD field in the mstatus

register is a read-only field that

reflects the Dirty state of the XS

or FS domain.Its logical relational

expression is: SD = ((FS==11) OR

(XS==11)).

The reason for setting this read-

only SD domain is to facilitate the

software to quickly query whether the

XS domain or the FS domain is in a

Page 90

Dirty state, so that it can quickly

determine whether a floating-point

unit or an extended instruction unit

needs context for context switching.

save.

Page 90

Interested users can refer to the

original risc-v "privileged

architecture document version 1.10".

7.4.13. mtvec

The mtvec register is used to

configure the entry address for

interrupts and exception handlers.

◼ The main points when mtvec configures the interrupted exception handler entry address are as follows:

 The exception handler uses a 4byte aligned mtvec address (replace mtvec's lower

2bit with 0) as the entry address.

◼ The main points when mtvec configures the entry address of the interrupt program are as follows:

 When mtvec.MODE != 6'b000011, the processor uses the "default interrupt mode".

 This mode is recommended when the processor uses "ECLIC Interrupt Mode" when mtvec.MODE = 6'b000011.

◆ The entry address and key points when the interrupt is in non-vector processing

mode 5.13.2 As stated in the section.

◆ The entry address and points when the interrupt is in vector processing mode are

as described in Section 5.13.1.

Each address bit field of the mtvec

registerTable 7-3 Table 7-3 Shown.

Page 90

Table 7-3 mtvec Register Control Bits

area

Bit

desc

ript

ion

ADDR 31:6 Mtvec address

MODE 5：0 ◼ The mode field is the interrupt

handling mode control field:

 000011: eclic interrupt mode (recommended mode)

 Others: Default Interrupt Mode

7.4.14. mtvt

The mtvt register is used to hold the

base address of the ECLIC interrupt

vector table, which is at least 64byte

aligned.

In order to improve the

performance and reduce the number of

hardware gates, the hardware

determines the alignment of mtvt

according to the number of

Page 90

interrupts actually implemented,

such asTable 7-4 Table 7-4 Shown.

Page 90

7.4.15. mscra

tch

Table 7-4 mtvt alignment

Maximum

number of

interruption

s

Mtvt

alignment

0 to 16 64-byte

17 to 32 128-byte

33 to 64 256-byte

65 to 128 512-byte

129 to 256 1KB

257 to 512 2KB

513 to 1024 4KB

1025 to 2048 8KB

2045 to 4096 16KB

The mscratch register is used by

programs in Machine Mode to

temporarily save certain data.The

mscratch register provides a save

and restore mechanism, such as

temporarily storing the

application's user stack pointer (SP)

Page 90

register in the mscratch register

after entering the interrupt or

exception handling mode, and then

mscratch before exiting the

exception handler. The value readout

in the register is restored to the

User Stack Pointer (SP) register.

7.4.16. mepc

The mepc register is used to hold

the PC value that the processor

is executing before entering the

exception, as the return address

Page 90

of the exception.To understand

this register, see Chapter 3 for

a systematic understanding of

exceptions.

note:

◼ When the processor enters an exception, the mepc register is updated simultaneously to

reflect the PC value of the instruction that is currently experiencing the exception.

◼ It is worth noting that although the mepc register is automatically updated by

hardware when an exception occurs, the mepc register itself is a readable and

writable register (in Machine Mode), so the software can also write this register

directly to modify its value. .

Each address bit field of the mepc

registerTable 7-5 Table 7-5 Shown.

Page 90

Table 7-5 Control bits of the mepc register

area

Bit

desc

ript

ion

EPC 31：1 Saves the pc value of the instruction that the processor is

executing before the exception occurs.

Reserved 0 Unused field is constant 0

7.4.17. mcause

The mcause register is used to

save the cause of the error before

entering the NMI, exception, and

interrupt, in order to diagnose and

debug the cause of the trap.

Each address field of the mcause

register isTable 7-6 Table 7-6 Shown.

Table 7-6 Control bits of the mcause register

area

Bit

desc

ript

ion

Page 90

INTERRUPT 31 Indicates the current Trap type:

◼ 0: abnormal or nmi

◼ 1: interrupt

MINHV 30 Indicates that the processor is reading the interrupt vector

table

MPP 29:28 Enter the privileged mode before the interrupt, the same as

mstatus.mpp

MPIE 27 Interrupt before entering interrupt is enabled, same as

mstatus.mpie

Reserved 26:24 Unused field is constant 0

MPIL 23:16 Previous interrupt level

Reserved 15:12 Unused field is constant 0

EXCCODE 11:0 Exception/interrupt coding

note:

◼ The MPIE and MPP fields of the mstatus register are mirrored to the MPIE and MPP

fields of mcause.

◼ NMI's mcause.EXCCODE may be 0x1 or 0xfff, and the actual value is controlled

by mmisc_ctl. For details, please refer to 7.5.4 Section.

Page 90

7.4.18. mtval （mbadaddr）

The mtval register (aka mbadaddr,

which is recognized by some versions

of the toolchain) is used to store

the encoded value of the error

instruction before entering the

exception or the address value of

the memory access, in order to

diagnose and debug the cause of the

exception.

To understand this register, see

Chapter 3 for a systematic

understanding of exceptions.

When the Bumblebee kernel enters an

Page 90

exception, the mtval register is

updated simultaneously to reflect the

current exception.

7.4.19. mip

The control bit of the mip register in

ECLIC interrupt mode does not work,

and the read mip returns all 0s.

7.4.20. mnxti

Mnxti (Next Interrupt Handler

Address and Interrupt-Enable CSR)

can be accessed by software to

handle the next interrupt in the

same Privilege Mode without causing

flushing pipelines and context save

Page 90

recovery.

The mnxti register is accessed by

the CSRRSI/CSRRCI instruction. The

read return value is the handler

address of the next interrupt, and

the mnxti writeback operation

updates the interrupt enable state.

note:

1. For interrupts of different Privilege Modes, the hardware is handled as interrupt

nesting, so mnxti will only process the next interrupt in the same Privilege Mode.

2. The mnxti register is not the same as the regular CSR instruction, and its return

value is the RMW of the regular register.

The value of the (read-modify-write)

operation is different:

 There are two cases where the return value of a mnxti CSR read operation is as

follows:

◆ The return value is 0 when the following occurs.

 No interrupts that can respond

Page 90

 The highest priority interrupt is vector interrupt

Page 90

◆ When the interrupt is a non-vector interrupt, the interrupt handler entry

address of this interrupt is returned.

 The mnxti CSR write updates the following registers and register fields:

◆ Mstatus is the destination register for the current RMW (read-modify-write)

operation

◆ The mcause.EXCCODE field and the interrupt id that will be updated to the

current response interrupt, respectively

◆ The mintstatus.MIL field is updated to the interrupt level (Level) of the

current response interrupt.

7.4.21. mintstatus

The mintstatus register holds the

interrupt level for valid interrupts

in each Privilege Mode.

Table 7-7 Control bits of the minstatus register

area

Bit

desc

ript

ion

MIL 31:24 Effective interrupt level for Machine Mode

Reserved 23：8 Unused field is constant 0

UIL 7:0 User Mode effective interrupt level

7.4.22. mscratchcsw

The mscratchcsw register is used

Page 90

to exchange the destination register

with the value of mscratch to speed

up interrupt handling when switching

between multiple privileged modes.

Use the CSR instruction with a read

to access mscratchcsw. When the

privileged mode is inconsistent

before and after the interrupt occurs,

there are register operations as

shown in the following directive:

csrrw rd， mscratchcsw， rs1

// Pseudocode operation.

if （mcause.mpp!=M-mode） then {
t = rs1; rd = mscratch; mscratch = t;

} else {

rd = rs1; // mscratch unchanged.

}

Page 90

// Usual use: csrrw sp， mscratchcsw， sp

The processor interrupts in the

Privilege Mode, the processor enters

the high privileged mode to handle

the interrupt, and when processing

the interrupt, the stack is needed

to save the state of the processor

before entering the interrupt.At

this time, if you continue to use

the stack pointer (SP) in low

privileged mode, the data of the

stack in the high privileged mode

will be stored in the interval that

the low privileged mode can access,

Page 90

resulting in the security of high

privileged mode data leakage to the

low privileged mode.

Vulnerabilities.To avoid this

vulnerability, the RISC-V

architecture specifies that when the

processor is in low privileged mode,

the stack pointer (SP) of the high

privileged mode needs to be saved to

the mscratch register, so that after

entering the high privileged mode,

the processor can use the mscratch

register. The value of the stack

pointer (SP) to restore the high

Page 90

privileged mode.

Using the normal instructions to

execute the above program requires

more cycles. The mscratchcsw

register is defined for this RISC-V

architecture. The mscratchcsw

register instruction is executed

immediately after the interrupt is

entered, and the values of mscratch

and SP are exchanged to restore the

stack of the high privileged mode.

Pointer (SP) while backing up the

low privileged mode stack pointer

(SP) to the mscratch register.Before

Page 90

executing the mret instruction to

exit the interrupt, a mscratchcsw

instruction is also added to

exchange the value of the mscratch

register and the stack pointer (SP),

and the stack pointer (SP) of the

high privileged mode is backed up to

mscratch again, and the stack

pointer of the low privileged mode

is restored. (SP).In this way, only

two instructions are needed to solve

the stack pointer (SP) switching

problem of different privileged

modes, which speeds up interrupt

Page 90

processing.

Note: To avoid virtualization

vulnerabilities, the software cannot

directly read the processor's

current privilege mode (Privilege

Mode).If the software attempts to

access the mscratchcsw register swap

operation in a given privileged mode

in a lower privileged mode, causing

the processor to enter a trap,

mscratchcsw does not cause a

virtualization vulnerability.

7.4.23. mscratchcswl

Page 90

The mscratchcswl register is used

to exchange the destination register

with the value of mscratch to speed

up interrupt handling when switching

between multiple interrupt levels.

Use the CSR instruction with read

to access mscratchcsw. When the

privileged mode is unchanged, when

there is a switch between the

interrupt program and the application,

there are register operations as

shown in the following directive:

csrrw rd， mscratchcswl， rs1

// Pseudocode operation.

if （ （mcause.mpil==0） != （mintstatus.mil == 0） ） then
{ t = rs1; rd = mscratch; mscratch = t;

} else {

Page 90

rd = rs1; // mscratch unchanged.

}

Page 90

// Usual use: csrrw sp， mscratchcswl， sp

In single privileged mode,

separating the interrupt handler task

from the stack space of the

application task can increase

robustness, reduce space usage, and

facilitate system debugging.The

interrupt handler task has a non-zero

interrupt level, while the

application task has a zero interrupt

level, according to which the

mscratchcswl register is defined by

the RISC-V architecture.Similar to

mscratchcsw, adding a mscratchcswl to

Page 90

the interrupt program entry and exit

respectively enables a fast stack

pointer switch between the interrupt

handler and the application, ensuring

separation of the stack space between

the interrupt handler and the

application.

7.4.24. Mcycle and mcycleh

The risc-v architecture defines a

64-bit wide clock cycle counter that

reflects how many clock cycles the

processor has executed.This counter

continuously increments as long as

Page 90

the processor is in the execution

state.

The mcycle register reflects the lower

32 bits of the counter, and the

mcycleh register reflects the 32-bit

high value of the counter.

The mcycle and mcycleh registers

can be used to measure processor

performance and have readable and

writable properties, so software can

override the values in the mcycle

and mcycleh registers with CSR

instructions.

In the implementation of the Bumblebee

Page 90

kernel, it is customizable because it

takes into account that this counter

count consumes some dynamic power.

An additional control field is added

to the CSR register mcountinhibit.

The software can configure this

control field to stop counting the

counters corresponding to mcycle and

mcycleh, so that the counter can be

stopped to save power when

performance is not required.See

7.5.1 Learn more about mcountinhibit

register information.

Note: This counter does not count

Page 90

if in debug mode, and the counter

will only count in normal function

mode.

7.4.25. Minstret and minstreth

The risc-v architecture defines a

64-bit wide instruction completion

counter that reflects how many

instructions the processor

successfully executed.This counter

increments as long as the processor

completes an instruction every

successful execution.

The minstret register reflects the

Page 90

lower 32 bits of the counter, and the

minstreth register reflects the 32-bit

high value of the counter.

The minstret and minstreth

registers can be used to measure

processor performance and have

readable and writable properties, so

software can override the values in

the minstret and minstreth registers

with CSR instructions.

Page 90

Since this counter count consumes

some dynamic power, in the

implementation of the Bumblebee

kernel, an additional control field

is added to the custom CSR register

mcountinhibit, and the software can

configure this control field to

minstret and

The counter corresponding to

minstreth stops counting, so that

the counter is stopped to save power

when performance is not required.See

7.5.1 Learn more about mcountinhibit

Page 90

register information.

Note: This counter does not count

if in debug mode, and the counter

will only count in normal function

mode.

7.4.26. Cycle and cycleh

Cycle and cycleh are read-only copies

of mcycle and mcycleh, respectively.Is

this register readable by User Mode?

The CY bit field of the CSR register

mcounteren is controlled, see section

7.4.29 Learn more about it.

7.4.27. Instret and intreth

Page 90

Instret and intreth are read-only

copies of minstret and minstreth,

respectively.Whether this register

is readable in User Mode is

controlled by the IR bit field of

the CSR register mcounteren, see

section 7.4.29 Learn more about it.

7.4.28. Time and timeh

Time and timeh are read-only copies of

mtime and mtimeh, respectively.Is this

register readable by User Mode?

The TM bit field of the CSR register

mcounteren is controlled, see section

7.4.29 Learn more about it.

Page 90

7.4.29. mcounteren

This register will only exist if it is

configured to support User Mode.Each

control bit field in the mcounteren

registertable

7-8 Table 7-8 Shown.

Table 7-8 mCounteren Register Control Bits

Page 90

area

Bit

description

CY 0 This bit controls whether the cycle and cycleh registers can be accessed in User

Mode:

◼ If this bit is 1, the cycle and cycleh can be accessed normally in User Mode.

◼ If this is 0, accessing cycle and cycleh in User Mode will trigger illegal

instruction.

Exception .Thi

s bit resets the

default value to

0.

TM 1 This bit controls whether the time and timeh registers can be accessed in User

Mode:

◼ If this bit is 1, the time and timeh can be accessed normally in User Mode.

◼ If this is 0, accessing time and timeh in User Mode will trigger illegal instruction.

Exception.

This bit resets the default value to 0.

IR 2 This bit controls whether the instret and intreth registers can be accessed in User

Mode:

◼ If this bit is 1, the instret and instreth can be accessed normally in User Mode.

◼ If this is 0, accessing instret and instreth in User Mode will trigger illegal

instruction.

Exception.

This bit resets the default value to 0.

Reserv
ed

3~31 Other unused fields are constants 0

7.5. Bumblebee kernel custom CSR

This section describes the CFF

registers customized by the Bumblebee

kernel.

7.5.1. mcountinhibit

The mcountinhibit register is used to

Page 90

control the count of mcycle and

minstret, each control bit field such

asTable 7-9 Table 7-9 Shown.

Table 7-9 Control bits of mcountinhibit register

area

Bit

desc

ript

ion

Reserved 31:3 Unused field is constant 0

IR 2 The count of minstret is turned off when IR is 1.

Reserved 1 Unused field is constant 0

CY 0 Count of mcycle is turned off when CY is 1

7.5.2. mnvec

Page 91

The mnvec register is used to

configure the entry address of the NMI.

In order to understand this register,

please refer to Chapter 4 for a

systematic understanding of nmi.

During the execution of the

processor program, once the NMI

encounters, the current program flow

is terminated, the processor is

forced to jump to a new PC address,

and the PC address jumped into the

NMI after the Bumblebee kernel

enters the NMI is specified by the

mnvec register. .

Note: The value of mnvec is controlled

Page 91

by mmisc_ctl. For more details, please

refer to 7.5.4 Section.

7.5.3. msubm

The Bumblebee kernel custom msubm

register is used to hold the Trap type

before and after the Trap.

Each control bit field in the msubm

register is asTable 7-10 Table 7-10

Shown.

Table 7-10 msubm Register Control Bits

area

Bit

desc

ript

ion

Reserved 31:10 Unused field is constant 0

PTYP 9:8 Save the Trap type before entering Trap:

◼ 0: Non-Trap status

◼ 1: interrupt

◼ 2: abnormal

◼ 3：NMI

TYP 7:6 Indicates the current Trap type of the Core:

◼ 0: Non-Trap status

◼ 1: interrupt

◼ 2: abnormal

◼ 3：NMI

Reserved 5:0 Unused field is constant 0

7.5.4. mmisc_ctl

Page 91

The Bumblebee kernel custom mmisc_ctl

register is used to control the mcause

values of mnvec and NMI.

Each control bit field in the mmisc_ctl

registerTable 7-11 Table 7-11 Shown. 设置

设置

Page 92

Table 7-11 Control bits of the mmisc_ctl register

area

Bit

desc

ript

ion

Reserved 31:10 Unused field is constant 0

NMI_CAUSE_ FFF 9 Control mcause.EXCCODE for mnvec and NMI:

◼ 0: The value of mnvec is equal to the PC after

processor reset, NMI

mcause.EXCCODE is 0x1

◼ 1: The value of mnvec is the same as mtvec, and the

mcause.EXCCODE of NMI is
0xfff

Reserved 8:0 Unused field is constant 0

7.5.5. msavestatus

Msavestatus is used to store the

values of mstatus and msubm to

ensure that the state of each domain

of mstatus and msubm is not flushed

by NMI or exceptions.Msavestatus has

a two-stage stack that supports up

to 3 levels of exception/NMI state

saving.For more two-level

NMI/Exception Status Stack, see

Page 92

Section 4.6.

Each control bit of the msavestatus

register is asTable 7-12 Table 7-12

Shown. 设置

设置

Table 7-12 msavestatus Register Control Bits

area

Bit

desc

ript

ion

Reserved 31:16 Unused field is constant 0

PTYP2 15:14 Second-level nested NMI/Trap type before exception occurs

Reserved 13:11 Unused field is constant 0

MPP2 10:9 Second-level nested NMI/Privilege mode before exception

occurs

MPIE2 8 The second level of nested nmi / interrupt enable state

before the exception occurs

PTYP1 7:6 The first level of nested NMI / Trap type before the

exception occurs

Reserved 5:3 Unused field is constant 0

MPP1 2:1 The first level of nested NMI / Privilege mode before the

exception occurs

MPIE1 0 The first level of nested nmi / interrupt enable state

before the exception occurs

7.5.6. Msaveepc1 and msaveepc2

Msaveepc1 and msaveepc2 are used

as the primary NMI/exception state

stack and the secondary

Page 92

NMI/exception state stack,

respectively, to store the PC before

the first-level nested

NMI/abnormality, and the PC before

the second-level nested

NMI/abnormality. .

◼ msaveepc2 <= msaveepc1 <= mepc <= interrupted PC <= NMI/exception PC

Page 98

When executing the mret instruction,

while mcause.INTERRUPT is 0 (eg NMI, or

exception), msaveepc1 and

Msaveepc2 recovers the processor's PC

through the primary and secondary

NMI/Exception Status Stacks,

respectively.

◼ msaveepc2 => msaveepc1 => mepc => PC

7.5.7. Msavecause1 and msavecause2

Msavecause1 and msavecause2 are

used as a level 1 NMI/Exception

State Stack and a Level 2

NMI/Exception State Stack,

respectively, to store the first

level of nested NMI/mcause before

Page 98

the exception occurs, and the second

level of nested NMI/mcause before

the exception occurs. .

◼ msavecause2 <= msavecause1 <= mcause <= NMI/exception cause

When executing the mret instruction

while mcause.INTERRUPT is 0 (eg NMI, or

exception), msavecause1

And msavecause2 restores the mcause

state through the primary and secondary

NMI/Exception State Stacks,

respectively.

◼ msavecause2 => msavecause1 => mcause

7.5.8. pushmsubm

The Bumblebee kernel defines CSR

instructions implemented by the

csrrwi operation of the pushmsubm

Page 98

register, storing

The value of msubm

to the stack

pointer is used as

the memory space of

the base address.

This CSR

instruction is

described by taking

the following

Page 98

instruction as an

example:

csrrwi x0， PUSHMSUBM， 1

The operation of this instruction is

to store the value of the msubm

register to the address of SP (stack

pointer) + 1 * 4.

7.5.9. mtvt2

Mtvt2 is used to specify the

interrupt common-code entry address

for ECLIC non-vector mode.

Each control bit field in the mtvt2

register is asTable 7-13 Table 7-13

Shown.

Page 98

Table 7-13 mtvt2 register control bits

area

Bit

desc

ript

ion

CMMON-COD E-
ENTRY

31:2 This field determines the ECLIC non-vector mode interrupt

when mtvt2.MTVT2EN=1

Common-code entry address.

Reserved 1 Unused field is constant 0

MTVT2EN 0 Mtvt2 enable bit:

◼ 0: ECLIC non-vector mode interrupt common-code entry

address by mtvec

Decide

◼ 1: ECLIC non-vector mode interrupt common-code entry

address by

mtvt2.COMMON-CODE-ENTRY decision

7.5.10. jalmnxti

The Bumblebee kernel defines the

jalmnxti register to reduce interrupt

latency and speed up interrupt tail

biting.

Jalmnxti In addition to the mnxti

enable interrupt enable, processing

the next interrupt, return to the

next interrupt entry address and

Page 98

other functions, there is a jump to

the interrupt handler function, so

the number of interrupt processing

instructions can be shortened,

reducing interrupts Delay, speed up

the purpose of interrupting the tail

bite.For more details on jalmnxti

please see 5.13.1.3 Section.

7.5.11. pushmcause

The Bumblebee kernel defines a CSR

instruction implemented by the

csrrwi operation of the pushmcause

register, storing

The value of mcause

Page 98

to the stack

pointer is used as

the memory space of

the base address.

This CSR

instruction is

described by taking

the following

instruction as an

Page 98

example:

csrrwi x0， PUSHMCAUSE， 1

The operation of this instruction is

to store the value of the mcause

register to the address of SP (stack

pointer) + 1 * 4.

7.5.12. pushmepc

The Bumblebee kernel defines a CSR

instruction implemented by the

csrrwi operation of the pushmepc

register, storing the mepc

The value of the stack pointer to

the memory space of the base address.

Introduce this csr instruction with

the following instruction as an

example:

Page 98

csrrwi x0， PUSHMPEC， 1

The operation of this instruction is

to store the value of the mepc

register to the address of SP (stack

pointer) + 1 * 4.

7.5.13. sleepvalue

The Bumblebee kernel customizes a CSR

register sleepvalue to control

different sleep modes, see section 8.1

For more details.Each control bit field

in the sleepvalue registerTable 7-14

Table 7-14 Shown.

Table 7-14 sleepvalue register control bits

area

Bit

desc

ript

ion

SLEEPVALUE 0 Control wfi sleep mode

◼ 0: Shallow sleep mode (the main working clock of the

processor core after executing wfi

Core_clk is closed)

◼ 1: Deep sleep mode (the main working clock of the

processor core after executing wfi

Core_clk and the processor core's normally open clock

Page 98

core_aon_clk are both turned off)

This bit resets the default value to 0.

Reserved 31:1 Unused field is constant 0

7.5.14. txevt

The Bumblebee kernel has a custom CSR

register, txevt, for sending events to

the outside world.

Each control bit field in the txevt

registerTable 7-15 Table 7-15 Shown.

Table 7-15 txevt Register Control Bits

area

Bit

desc

ript

ion

TXEVT 0 Control to send Event:

◼ If you write 1 to this bit, it will trigger the output

signal tx_evt of the Bumblebee kernel.

A single-cycle pulse signal is generated as an

external Event signal.

◼ This bit is a self-clearing bit, that is, after a 1 is

written to this bit, it is self-cleared to 0 in the next

cycle.

◼ Writing 0 to this bit has no

reaction or operation.This bit resets

the default value to 0.

Reserved 31:1 Unused field is constant 0

Page 98

7.5.15. wfe

The Bumblebee kernel has a custom

CSR register wfe that controls

whether the WFI instruction wakes up

using an interrupt or an Event.See

section 8.2.3 For more details.

Each control bit field in the wfe

registerTable 7-16 Table 7-16 Shown.

Table 7-16 Control bits of the wfe register

area

Bit

desc

ript

ion

WFE 0 The wake-up condition that controls the WFI instruction is whether to use

an interrupt or an Event.

◼ 0: The processor core can be interrupted and nmi wake

up when it enters sleep mode.

◼ 1: When the processor core enters sleep mode, it can

be woken up by Event and NMI.This bit resets to a default

of 0.

Reserved 31:1 Unused field is constant 0

Page 98

8. Introduction to the Bumblebee core low power mechanism

The Bumblebee core can support sleep

mode for lower static power

consumption.

8.1. Go to sleep

The Bumblebee kernel can go to sleep

through the WFI instruction.When the

processor executes the WFI instruction,

it will:

◼ Immediately stop executing the current instruction stream;

◼ Waiting for the processor core to complete any outstanding outstanding

operations (Outstanding Transactions), such as fetching instructions and data

read and write operations, to ensure that the operations sent to the bus are

completed;

 Note: If a memory access error exception occurs while waiting for an

operation on the bus to complete, it will enter the exception handling

mode without sleeping.

◼ When all of the Outstanding Transactions are completed, the processor safely

enters an idle state, which can be referred to as a "sleep" state.

◼ When entering sleep mode:

Page 98

 The clocks of the main units inside the Bumblebee core will be gated off to save

static power consumption;

 The output signal core_wfi_mode of the Bumblebee kernel is pulled high, indicating

that this processor core is executing WFI

The sleep state after the

instruction;

 The Bumblebee kernel's output signal core_sleep_value will output the

value of the CSR register sleepvalue (note: this signal is only valid when

the core_wfi_mode signal is high; the core_sleep_value must be 0 when the

core_wfi_mode signal is low).Software can configure the CSR register by

prior

Sleepvalue to indicate a different

sleep mode (0 or 1).note:

◆ The Bumblebee kernel behaves exactly the same for different sleep

modes.This sleep mode is only for the corresponding control of the PMU

(Power Management Unit) at the SoC system level.

Page 98

8.2. Exit hibernation

The main points of the Bumblebee

kernel processor exiting sleep mode

are as follows:

◼ The output signal core_wfi_mode of the Bumblebee kernel is pulled low accordingly.

◼ The Bumblebee kernel processor can be woken up in four ways:

 NMI

 Interrupt

 Event

 Debug request

This will be described in detail below.

8.2.1. Nmi wake up

NMI can always wake up the

processor core.When the processor

core detects a rising edge of the

Page 98

input signal nmi, the processor core

wakes up and proceeds to the NMI

service routine to begin execution.

8.2.2. Interrupt wakeup

Interrupts can also wake up the

processor core:

◼ If the mstatus.MIE field is configured to 1 (indicating that the global interrupt is turned on):

 When eclic (by arbitrating an externally requested interrupt) sends an interrupt to the processor

core, the processor core wakes up and proceeds to the interrupt service routine to begin execution.

◼ If the mstatus.MIE field is configured to 0 (indicating that the global interrupt is closed):

 If the CSR register wfe.WFE field is configured to 0, then:

◆ When eclic (by arbitrating an externally requested interrupt) sends an interrupt to the

processor core, the processor core wakes up and continues to execute the previously stopped

instruction stream (instead of entering the interrupt service routine).

Page 99

 If the CSR register wfe.WFE field is configured to 1, then wait for Event wakeup, see the

description in the next section.

8.2.3. Event wake up

Event can wake up the processor core

when the following conditions are met:

◼ If the mstatus.MIE field is configured to 0 (indicating that the global interrupt is turned

off) and the CSR register wfe.WFE field is configured to 1, then:

 When the processor core detects that the input signal rx_evt (called the

Event signal) is high, the processor core wakes up and continues executing

the previously stopped instruction stream (instead of entering the interrupt

service routine).

8.2.4. Debug wake up

The Debug request always wakes up

the processor core. If the debugger

is Debugged, it will wake up the

processor core and enter debug mode.

8.3. Wait for Interrupt mechanism

Page 99

The Wait for Interrupt mechanism

refers to putting the processor

core into sleep mode, then waiting

for the interrupt to wake up the

processor core, and waking up to

the corresponding interrupt handler.

Such as the first 8.1 Festival and

section 8.28.2 As mentioned in the

section, the Wait for Interrupt

mechanism can directly pass the WFI

instruction (cooperate 设置

The mstatus.MIE field is configured to

1) complete.

8.4. Wait for Event mechanism

The Wait for Event mechanism

refers to putting the processor core

Page 99

into sleep mode, then waiting for

Event to wake up the processor core,

and waking up to continue the

previously stopped program (instead

of entering the interrupt handler).

Such as the first 8.1 Festival and

section 8.28.2 As mentioned in the

section, the Wait for Event mechanism

can directly pass the WFI instruction

with the following instructions. 设置

Sequence completion:

Page 99

Step 1: Configure the mstatus.MIE field
to 0 to turn off global interrupts Step

2: Configure the wfe.WFE domain to be 1
Step 3: Call the WFI instruction.After this instruction is called, the processor enters sleep mode
and will continue to execute downwards when Event or NMI wakes up.Step 4: Restore the wfe.WFE field

to 0

Step 5: Restore the mstatus.MIE field to the previous value

